화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.51, 223-228, July, 2017
Titanium oxide nanofibers decorated nickel-rich cathodes as high performance electrodes in lithium ion batteries
E-mail:
TiO2 nanofibers (TNF) are prepared by electrospinning method and they are decorated over the surface of Li[Ni0.8Co0.15Al0.05]O2 (LNCA) cathodes at three different ratios. The structural, electrochemical, and thermal characteristics of TNF-decorated LNCAs are compared with pristine LNCA. The TNF-decorated LNCA electrodes demonstrate better cycleability and specific capacity than those of the pristine LNCA. Under the current density of a C/10 rate, 1 wt% TNF-decorated LNCA delivers 89.2% and 81.4% of capacity retention at room temperature and elevated temperature, respectively. The onset temperature of thermal decomposition is also shifted towards higher temperature for TNF-decorated LNCA electrodes than pristine LNCA electrodes.
  1. Ritchie AG, Giwa CO, Bowles PG, Burgess J, Eweka E, Gilmour A, J. Power Sources, 96(1), 180 (2001)
  2. Scrosati B, Electrochim. Acta, 45(15-16), 2461 (2000)
  3. Tarascon JM, Armand M, Nature, 414, 359 (2001)
  4. Jo YN, Prasanna K, Park SJ, Lee CW, Electrochim. Acta, 108, 32 (2013)
  5. Kim KJ, Jo YN, Lee WJ, Subburaj T, Prasanna K, Lee CW, J. Power Sources, 268, 349 (2014)
  6. Lee WJ, Prasanna K, Jo YN, Kim KJ, Kim HS, Lee CW, Phys. Chem. Chem. Phys., 16, 17062 (2014)
  7. Delmas C, Menetrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, Prado G, Grune M, Fournes L, Electrochim. Acta, 45(1-2), 243 (1999)
  8. Madhavi S, Rao GVS, Chowdari BVR, Li SFY, J. Power Sources, 93(1-2), 156 (2001)
  9. Chang CC, Kim JY, Kumta PN, J. Power Sources, 89(1), 56 (2000)
  10. Cho J, Chem. Mater., 12, 3089 (2000)
  11. Kweon HJ, Park DG, Electrochem. Solid State Lett., 3(3), 128 (2000)
  12. Kweon HJ, Kim SJ, Park DG, J. Power Sources, 88(2), 255 (2000)
  13. Kim Y, Cho J, J. Electrochem. Soc., 154(6), A495 (2007)
  14. Hong W, Chen MC, Electrochem. Solid State Lett., 9(2), A82 (2006)
  15. Lee SM, Oh SH, Ahn JP, Cho WI, Jang H, J. Power Sources, 159(2), 1334 (2006)
  16. Zhao HL, Ling G, Qiu WH, Zhang XH, J. Power Sources, 132(1-2), 195 (2004)
  17. Fey GTK, Lu CZ, Kumar TP, Chang YC, Surf. Coat. Technol., 199, 22 (2005)
  18. Wang HY, Tang AD, Huang KL, Liu SQ, Trans. Nonferrous Metals Soc. China, 20, 803 (2010)
  19. Chowdari B, Rao GS, Chow S, J. Solid State Electrochem., 6, 565 (2002)
  20. Ha HW, Jeong KH, Yun NJ, Hong MZ, Kim K, Electrochim. Acta, 50(18), 3764 (2005)
  21. Xin-Rong D, Guo-Rong H, Ke D, Zhong-Dong P, Xu-Guang G, Ya-Nan Y, Mater. Chem. Phys., 109(2-3), 469 (2008)
  22. Ma X, Wang C, Han X, Sun J, J. Alloy. Compd., 453, 352 (2008)
  23. Guo R, Shi PF, Cheng XQ, Sun L, Electrochim. Acta, 54(24), 5796 (2009)
  24. Arumugam D, Kalaignan GP, Mater. Res. Bull., 45(12), 1825 (2010)
  25. Cho Y, Cho J, J. Electrochem. Soc., 157(6), A625 (2010)
  26. Cho Y, Lee YS, Park SA, Lee Y, Cho J, Electrochim. Acta, 56(1), 333 (2010)
  27. Li J, Fan M, He X, Zhao R, Jiange C, Wan C, Ionics, 12, 215 (2006)
  28. Xu Y, Li X, Wang Z, Guo H, Huang B, Mater. Lett., 143, 151 (2015)
  29. Schechter A, Aurbach D, Cohen H, Langmuir, 15(9), 3334 (1999)
  30. Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M, J. Electrochem. Soc., 147(4), 1322 (2000)
  31. Edstrom K, Gustafsson T, Thomas JO, Electrochim. Acta, 50(2-3), 397 (2004)
  32. Kanamura K, Tamura H, Shiraishi S, Takehara ZI, Electrochim. Acta, 40(7), 913 (1995)
  33. Periasamy P, Kim HS, Na SH, Moon SI, Lee JC, J. Power Sources, 132(1-2), 213 (2004)
  34. Li WT, Lucht BL, J. Electrochem. Soc., 153(8), A1617 (2006)
  35. Markovsky B, Rodkin A, Salitra G, Talyosef Y, Aurbach D, Kim HJ, J. Electrochem. Soc., 151(7), A1068 (2004)
  36. Lee YS, Shin WK, Kannan AG, Koo SM, Kim DW, ACS App. Mater. Interfaces, 7, 13944 (2015)
  37. Benmayza A, Lu WQ, Ramani V, Prakash J, Electrochim. Acta, 123, 7 (2014)