- Previous Article
- Next Article
- Table of Contents
Journal of Industrial and Engineering Chemistry, Vol.51, 223-228, July, 2017
Titanium oxide nanofibers decorated nickel-rich cathodes as high performance electrodes in lithium ion batteries
E-mail:
TiO2 nanofibers (TNF) are prepared by electrospinning method and they are decorated over the surface of Li[Ni0.8Co0.15Al0.05]O2 (LNCA) cathodes at three different ratios. The structural, electrochemical, and thermal characteristics of TNF-decorated LNCAs are compared with pristine LNCA. The TNF-decorated LNCA electrodes demonstrate better cycleability and specific capacity than those of the pristine LNCA. Under the current density of a C/10 rate, 1 wt% TNF-decorated LNCA delivers 89.2% and 81.4% of capacity retention at room temperature and elevated temperature, respectively. The onset temperature of thermal decomposition is also shifted towards higher temperature for TNF-decorated LNCA electrodes than pristine LNCA electrodes.
- Ritchie AG, Giwa CO, Bowles PG, Burgess J, Eweka E, Gilmour A, J. Power Sources, 96(1), 180 (2001)
- Scrosati B, Electrochim. Acta, 45(15-16), 2461 (2000)
- Tarascon JM, Armand M, Nature, 414, 359 (2001)
- Jo YN, Prasanna K, Park SJ, Lee CW, Electrochim. Acta, 108, 32 (2013)
- Kim KJ, Jo YN, Lee WJ, Subburaj T, Prasanna K, Lee CW, J. Power Sources, 268, 349 (2014)
- Lee WJ, Prasanna K, Jo YN, Kim KJ, Kim HS, Lee CW, Phys. Chem. Chem. Phys., 16, 17062 (2014)
- Delmas C, Menetrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, Prado G, Grune M, Fournes L, Electrochim. Acta, 45(1-2), 243 (1999)
- Madhavi S, Rao GVS, Chowdari BVR, Li SFY, J. Power Sources, 93(1-2), 156 (2001)
- Chang CC, Kim JY, Kumta PN, J. Power Sources, 89(1), 56 (2000)
- Cho J, Chem. Mater., 12, 3089 (2000)
- Kweon HJ, Park DG, Electrochem. Solid State Lett., 3(3), 128 (2000)
- Kweon HJ, Kim SJ, Park DG, J. Power Sources, 88(2), 255 (2000)
- Kim Y, Cho J, J. Electrochem. Soc., 154(6), A495 (2007)
- Hong W, Chen MC, Electrochem. Solid State Lett., 9(2), A82 (2006)
- Lee SM, Oh SH, Ahn JP, Cho WI, Jang H, J. Power Sources, 159(2), 1334 (2006)
- Zhao HL, Ling G, Qiu WH, Zhang XH, J. Power Sources, 132(1-2), 195 (2004)
- Fey GTK, Lu CZ, Kumar TP, Chang YC, Surf. Coat. Technol., 199, 22 (2005)
- Wang HY, Tang AD, Huang KL, Liu SQ, Trans. Nonferrous Metals Soc. China, 20, 803 (2010)
- Chowdari B, Rao GS, Chow S, J. Solid State Electrochem., 6, 565 (2002)
- Ha HW, Jeong KH, Yun NJ, Hong MZ, Kim K, Electrochim. Acta, 50(18), 3764 (2005)
- Xin-Rong D, Guo-Rong H, Ke D, Zhong-Dong P, Xu-Guang G, Ya-Nan Y, Mater. Chem. Phys., 109(2-3), 469 (2008)
- Ma X, Wang C, Han X, Sun J, J. Alloy. Compd., 453, 352 (2008)
- Guo R, Shi PF, Cheng XQ, Sun L, Electrochim. Acta, 54(24), 5796 (2009)
- Arumugam D, Kalaignan GP, Mater. Res. Bull., 45(12), 1825 (2010)
- Cho Y, Cho J, J. Electrochem. Soc., 157(6), A625 (2010)
- Cho Y, Lee YS, Park SA, Lee Y, Cho J, Electrochim. Acta, 56(1), 333 (2010)
- Li J, Fan M, He X, Zhao R, Jiange C, Wan C, Ionics, 12, 215 (2006)
- Xu Y, Li X, Wang Z, Guo H, Huang B, Mater. Lett., 143, 151 (2015)
- Schechter A, Aurbach D, Cohen H, Langmuir, 15(9), 3334 (1999)
- Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M, J. Electrochem. Soc., 147(4), 1322 (2000)
- Edstrom K, Gustafsson T, Thomas JO, Electrochim. Acta, 50(2-3), 397 (2004)
- Kanamura K, Tamura H, Shiraishi S, Takehara ZI, Electrochim. Acta, 40(7), 913 (1995)
- Periasamy P, Kim HS, Na SH, Moon SI, Lee JC, J. Power Sources, 132(1-2), 213 (2004)
- Li WT, Lucht BL, J. Electrochem. Soc., 153(8), A1617 (2006)
- Markovsky B, Rodkin A, Salitra G, Talyosef Y, Aurbach D, Kim HJ, J. Electrochem. Soc., 151(7), A1068 (2004)
- Lee YS, Shin WK, Kannan AG, Koo SM, Kim DW, ACS App. Mater. Interfaces, 7, 13944 (2015)
- Benmayza A, Lu WQ, Ramani V, Prakash J, Electrochim. Acta, 123, 7 (2014)