화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.6, 640-647, June, 2017
Enhancement of Self-Healing Property by Introducing Ethylene Glycol Group into Thermally Reversible Diels-Alder Reaction Based Self-Healable Materials
E-mail:
Herein, the effect of chain mobility on the efficiency of self-healing was investigated based on thermally reversible Diels-Alder reaction. Ethylene glycol group was chosen as the functional group for increasing chain mobility of the furan functionalized polymethacrylate and bismaleimide, respectively. From the thermal analysis of the films prepared with various combinations between furan functionalized polymethacrylates and bismaleimide, it was found that glass transition temperature of films decreased with increasing the content of ethylene glycol group. Comparing the state of film before and after the self-healing process by optical microscope images, it was also confirmed that the film prepared with polymer and bismaleimide having high ratio of ethylene glycol group (FEEMA55 and bismaleimide- 1) has high self-healing efficiency. Therefore, the improving mobility by the introduction of ethylene glycol group plays an important role for the enhancement of self-healing property.
  1. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S, Nature, 409(6822), 794 (2001)
  2. Keller MW, White SR, Sottos NR, Adv. Funct. Mater., 17(14), 2399 (2007)
  3. Toohey KS, Hansen CJ, Lewis JA, White SR, Sottos NR, Adv. Funct. Mater., 19(9), 1399 (2009)
  4. Cho SH, White SR, Braun PV, Adv. Mater., 21(6), 645 (2009)
  5. Yang Y, Urban MW, Chem. Soc. Rev., 42, 7446 (2013)
  6. Chung CM, Roh YS, Cho SY, Kim JG, Chem. Mater., 16, 3982 (2004)
  7. Banerjee S, Tripathy R, Cozzens D, Nagy T, Keki S, Zsuga M, Faust R, ACS Appl. Mater. Interfaces, 7, 2064 (2015)
  8. Yoon JA, Kamada J, Koynov K, Mohin J, Nicolay R, Shang Y, Calazs AC, Kowalewski T, Matyjaszewski K, Macromolecules, 42, 142 (2012)
  9. Kuhl N, Geitner R, Bose RK, bode S, Dietzek B, Schmitt M, Popp J, Garcia SJ, van der Zwaag S, Schubert US, Hager MD, Macromol. Chem. Phys., 217, 2541 (2016)
  10. Zhou H, Xu G, Li J, Zeng S, Zhang X, Zheng Z, Ding X, Chen W, Wang Q, Zhang W, Macromol. Res., 23(12), 1098 (2015)
  11. Chen X, Dam MA, Ono K, Mal S, Shen H, Nutt SR, Sheran K, Wudl F, Science, 295, 1698 (2002)
  12. Peterson AM, Jensen RE, Palmese GR, Compos. Sci. Technol., 71, 586 (2011)
  13. Park JS, Darlington T, Starr AF, Takahashi K, Riendeau J, Hahn HT, Compos. Sci. Technol., 70, 2154 (2010)
  14. du P, Wu M, Liu X, Zheng Z, Wang X, Joncheray T, Zhang Y, J. Appl. Polym. Sci., 131, 40234 (2014)
  15. Li J, Zhang G, Deng L, Jiang K, Zhao S, Gao Y, Sun R, Wong C, J. Appl. Polym. Sci., 132, 42167 (2015)
  16. Kuang X, Liu G, Dong X, Wang D, Macromol. Mater. Eng., 301, 535 (2016)
  17. Zhao J, Xu R, Luo G, Wu J, Xia H, J. Mater. Chem. B, 4, 982- 989.
  18. Froidevaux V, Borne M, Laborbe E, Auvergne R, Gandini A, Boutevin B, RSC Adv., 5, 37742 (2015)
  19. Engel T, Kickelbick G, Eur. J. Inorg. Chem., 7, 1226 (2015)
  20. Vazquez CP, Joly-Duhamel C, Boutevin B, Macromol. Chem. Phys., 210, 269 (2009)
  21. Kavitha AA, Singha NK, J. Polym. Sci. A: Polym. Chem., 19, 4441 (2007)
  22. Weizman H, Nielsen C, Weizman OS, Nemat-Nasser S, J. Chem. Educ., 88, 1137 (2011)
  23. Postiglione G, Turri S, Levi M, Prog. Org. Coat., 78, 526 (2015)
  24. Watanabe M, Yoshie N, Polymer, 47(14), 4946 (2006)
  25. Choi WJ, Chung JS, Kim JJ, Kim SK, Cha SH, Park M, Lee JC, J. Coat. Technol., 11, 455 (2014)