Polymer(Korea), Vol.41, No.4, 586-591, July, 2017
방사선 이용 상처치료용 β-Glucan 하이드로젤 제조 및 특성 분석
Preparation and Characterization of Radiation Fabricated β-Glucan Hydrogels for Wound Dressing
E-mail:
초록
화학가교제의 사용없이 감마선을 이용하여 β-glucan, poly(vinyl alcohol)(PVA), poly(vinyl pyrrolidone)(PVP),κ-carrageenan(κC), glycerin으로 구성된 고분자 하이드로젤을 제조하였다. 25, 50, 75 kGy로 감마선 조사선량을 달리하여 하이드로젤을 제조한 후, 젤화율, 팽윤도, 압축강도의 측정을 통해 제조된 하이드로젤의 물리적 특성을 확인 하였다. 조사선량의 증가에 따라 하이드로젤의 가교밀도가 증가되어 젤화율과 압축강도는 증가하였고, 팽윤도는 감소되었다. 제조된 베타글루칸 하이드로젤로 손상된 조직의 재생 특성을 평가해 보기 위해 동물실험을 수행하였고, 그 결과 베타글루칸이 함유된 하이드로젤이 빠른 상처 치유능을 나타내었고, 상용제품과 비교 시에도 동등한 치료효과를 관찰할 수 있었다. 따라서 감마선으로 제조된 β-glucan/PVA/PVP/κC/glycerin 하이드로젤은 화학가교제 독성의 우려 없이 β-glucan에 의한 향상된 치료효과와 더불어 향후 조직재생용 소재로서 유용하게 사용될 수 있을 것으로 사료된다.
Hydrogels consisted of β-glucan, poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), κ-carrageenan (κC) and glycerin were prepared by gamma-ray irradiation for damaged tissue regeneration. Irradiation doses of 25, 50, and 75 kGy were exposed, respectively, to the β-glucan hydrogel to evaluate the effect of irradiation dose on physical properties. The physical properties were examined such as gel fraction, absorption ratio, and compressive strength. It was found that the gel fraction and the compressive strength increased with increasing the irradiation dose. This is due to the fact that the crosslinking density increases with increasing the irradiation dose, whereas the absorption ratio decreased with increasing the irradiation dose. On observing the wound healing of rat skin, the resulting hydrogels accelerated the wound repair, which can be attributed to the release of β-glucan from the hydrogel. Therefore, radiation fabricated β-glucan/ PVA/PVP/κC/glycerin blended hydrogel was suitable for wound healing and could be considered as good tissue regeneration biomaterials without chemical toxicity.
- Winter GD, Nature, 293 (1962).
- Winter GD, J. Invest. Dermatol., 45, 299 (1965)
- Peppas NA, Merrill EW, J. Appl. Polym. Sci., 20, 1457 (1976)
- Chu CC, Biodegradable hydrogels as drug controlled release Vehicles, Cornell Univ. Press, Ithaca, p 257 (2004).
- Rosiak JM, J. Control. Release, 31, 9 (1994)
- Wood PJ, Webster FH, Editors, Chemistry and Technology, 2nd Ed., AACC Intl. Press, Minnesota, p 121-152 (1986).
- Borchers AT, Keen CL, Gershwin ME, Exp. Biol. Med., 229, 393 (2004)
- Falch BH, Espevik T, Ryan L, Stokke BT, Carbohydr. Res., 329, 587 (2000)
- Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J, Immunopharmacology, 42, 61 (1999)
- Lee SB, Jeon HW, Lee YW, Lee YM, Song KW, Park MH, Nam YS, Ahn HC, Biomaterials, 24, 2503 (2003)
- Bohn JA, BeMiller JN, Carbohydr. Polym., 28, 3 (1995)
- Nijenhuis KT, Thermoreversible Networks, Springer Press, Berlin, p 203 (1997).
- Tye RJ, Carbohydr. Polym., 10, 259 (1989)
- Park KR, Nho YC, Radiat. Phys. Chem., 67, 361 (2003)
- Bodugoz H, Pekel N, Guven O, Radiat. Phys. Chem., 55, 667 (1999)
- Maolin Z, Hongfei H, Yoshii F, Makuuchi K, Radiat. Phys. Chem., 57, 459 (2000)
- Rosiak JM, Ulanski P, Radiat. Phys. Chem., 55, 139 (1999)
- Park K, Shalaby WSW, Park H, Biodegradable Hydrogels for Drug Delivery, Technomic Publishing Company Inc. Press, Lancaster, p 47 (1993).
- Hennink WE, Van Nostrum CF, Adv. Drug Deliv. Rev., 54, 13 (2012)
- Huang MH, Yang MC, Int. J. Pharm., 346, 38 (2008)
- Yamada N, Uchinuma E, Kuroyanagi Y, Plast. Reconstr. Surg., 33, 147 (1999)