화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.52, 89-98, August, 2017
Quantum dots: A new approach in thermodynamic inhibitor for the drilling of gas hydrate bearing formation
E-mail:,
The large amount of thermodynamic hydrate inhibitor is required for hydrate inhibition in drilling fluid and causes environmental problem and proved to be uneconomical during deep well drilling. Quantum dots may be the solution for these problems. In this study, carbon dots (CDs) prepared from ethylene glycol and hydrate inhibition efficiency of CDs were compared with ethylene glycol. THF (Tetrahydrofu- ran) hydrate was used for the testing of hydrate inhibition efficiency at 1°C. The CDs do not affect the drilling fluid rheology adversely and inhibits the hydrate crystals better than EG. Hence, CDs can be effectively used in drilling fluid.
  1. Kelland MA, Monig K, Iversen JE, Lekvam K, Energy Fuels, 22(4), 2405 (2008)
  2. Abrahamsen E, Kelland MA, Energy Fuels, 30(10), 8134 (2016)
  3. Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, Third ed., CRC Press Taylor & Francis Group, Boca Raton, FL, USA, 2008.
  4. Ostegaard KK, Tohidi B, Danesh A, Todd AC, Ann. N. Y. Acad. Sci., 912, 411 (2000)
  5. Barker JW, Gomez RK, J. Petrol. Tech, 41, 297 (1989)
  6. Kelland MA, Energy Fuels, 20(3), 825 (2006)
  7. Townson I, Walker VK, Ripmeester JA, Englezos P, Energy Fuels, 26(12), 7170 (2012)
  8. Halliday W, Clapper DK, Smalling M, New gas hydrate inhibitors for deepwater drilling fluids, Proceedings of the IADC/SPE Drilling Conference, Dallas, TX, March 3.6, 1998 SPE 39316.
  9. Del Villano L, Kommedal R, Fijten MWM, Schubert US, Hoogenboom R, Kelland MA, Energy Fuels, 23(7), 3665 (2009)
  10. Kang YF, Li YH, Fang YW, Xu Y, Wei XM, Yin XB, Sci. Rep., 5, 11835 (2015)
  11. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM, Nat. Biotechnol., 21, 47 (2002)
  12. Li H, Shao FQ, Huang H, Feng JJ, Wang AJ, Sens. Actuators B-Chem., 226, 506 (2016)
  13. Ming H, Ma Z, Liu Y, Pan KM, Yu H, Wang F, Kang ZH, Dalton Trans., 41, 9526 (2012)
  14. Li HT, Kang ZH, Liu Y, Lee ST, J. Mater. Chem., 22, 24230 (2012)
  15. Tang LB, Ji RB, Cao XK, Lin JY, Jiang HX, Li XM, Teng KS, Luk CM, Zeng SJ, Hao JH, Lau SP, ACS Nano, 6(6), 5102 (2012)
  16. Bera D, Qian L, Tseng TK, Holloway PH, Materials, 3(4), 2260 (2010)
  17. Zhang Z, Sun W, Wu P, ACS Sustain. Chem. Eng., 3(7), 1412 (2015)
  18. Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J, Biosens. Bioelectron., 85, 68 (2016)
  19. Saikia T, Mahto V, J. Pet. Sci. Eng., 147, 647 (2016)
  20. Jeffrey GA, J. Incl. Phenom. Macrocycl. Chem., 1(3), 211 (1984)
  21. Li SJ, Wang YH, Lang XM, Fan SS, J. Cryst. Growth, 377, 101 (2013)
  22. Lee JY, Yun TS, Santamarina JC, Ruppel C, Geochem. Geophys. Geosyst. 8 (2007) Q06003, doi:http://dx.doi.org/10.1029/2006GC001531.
  23. Peixinho J, Karanjkar PU, Lee JW, Morris JF, Langmuir, 26(14), 11699 (2010)
  24. Kashchiev D, Firoozabadi A, J. Crys. Growth, 243(3-+4), 476 (2002)
  25. Vysniauskas A, Bishnoi PR, Chem. Eng. Sci., 38(7), 1061 (1983)
  26. Saikia T, Mahto V, J. Nat. Gas Sci. Eng., 36A, 906 (2016)
  27. Wilson PW, Haymet ADJ, Condens. Matter Phys., 19(2), 23602 (2016)
  28. Maeda N, Fong C, Sheng Q, da Silveira KC, Tian W, Seeber A, Ganther W, Kelland MA, Mady MF, Wood CD, Energy Fuels, 30(7), 5432 (2016)
  29. Zeng H, Wilson LD, Walker VK, Ripmeester JA, Can. J. Phys., 81, 17 (2003)
  30. Wu S, Zhang G, Huang Y, Liang J, Wong HK, Mar. Pet. Geol., 22, 403 (2005)
  31. Sheng-ying Z, Jie-nian Y, Yong S, Hong-xia Z, J. Cent. South Univ. Technol., 15(s1), 457 (2008)
  32. Menne M, Global Long-term Mean Land and Sea Surface Temperatures, National Climatic Data Center, 2000 retrieved 19.10.06.
  33. Mahto V, Sharma VP, J. Pet. Sci. Eng., 45(1-2), 123 (2004)