화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.52, 218-223, August, 2017
Process design and techno-economic evaluation for catalytic production of cellulosic g-Valerolactone using lignin derived propyl guaiacol
E-mail:
This paper presents an integrated strategy to produce cellulosic γ-Valerolactone (GVL) using lignin derived propyl guaiacol (PG) from lignocellulosic biomass. A commercially large-scale process that was designed based on the strategy achieves 12.3% carbon yields at low (9.1-30.0 wt%) concentrations of reactants, and requires an efficient separation system to obtain high recovery of products with low energy requirements. A heat exchanger network is designed to significantly decrease the total energy requirements of the process. Techno-economic evaluation results assuming nth commercial plant and negative economic parameters show that this process ($US 3,805/t GVL) can be cost competitive with current production approaches.
  1. Remon J, Arcelus-Arrillaga P, Garcia L, Arauzo J, Energy Conv. Manag., 119, 14 (2016)
  2. Kang K, Azargohar R, Dalai AK, Wang H, Energy Conv. Manag., 117, 528 (2016)
  3. Ramli NAS, Amin NAS, Energy Conv. Manag., 95, 10 (2015)
  4. Kazan A, Celiktas MS, Sargin S, Yesil-Celiktas O, Energy Conv. Manag., 103, 366 (2015)
  5. Luterbacher JS, Alonso DM, Dumesic JA, Green Chem., 16, 4816 (2014)
  6. Kim D, Lee K, Park KY, J. Ind. Eng. Chem., 42, 95 (2016)
  7. Lee HJ, Lim WS, Lee JW, J. Ind. Eng. Chem., 19(6), 2010 (2013)
  8. He J, Li H, Liu Y, Zhao W, Yang T, Xue W, Yang S, J. Ind. Eng. Chem., 43, 133 (2016)
  9. Winoto HP, Ahn BS, Jae J, J. Ind. Eng. Chem., 40, 62 (2016)
  10. Alonso DM, Wettstein SG, Dumesic JA, Green Chem., 15, 584 (2013)
  11. Han J, Energy Conv. Manag., 129, 75 (2016)
  12. Azadi P, Carrasquillo-Flores R, Pagan-Torres YJ, Gurbuz EI, Farnood R, Dumesic JA, Green Chem., 14, 1573 (2012)
  13. Tabasso S, Grillo G, Carnaroglio D, Gaudino EC, Cravotto G, Molecules, 21, 413 (2016)
  14. Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G, Fuel, 89, S20 (2010)
  15. Kim S, Han J, Bioresour. Technol., 204, 1 (2016)
  16. Sen SM, Gurbuz EI, Wettstein SG, Alonso DM, Dumesic JA, Maravelias CT, Green Chem., 14, 3289 (2012)
  17. Han J, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Bioresour. Technol., 182, 258 (2015)
  18. Han J, Sen SM, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Comput. Chem. Eng., 81, 57 (2015)
  19. Han J, Sen SM, Alonso DM, Dumesic JA, Maravelias CT, Green Chem., 16, 653 (2014)
  20. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J, Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover, (2002) Medium: ED; Size: 154 pages.
  21. Serrano-Ruiz JC, Braden DJ, West RM, Dumesic JA, Appl. Catal. B: Environ., 100(1-2), 184 (2010)
  22. Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA, Science, 343(6168), 277 (2014)
  23. AspenPlusSimulatorV7.3, Aspen Technology Inc., Cambridge, 2011.
  24. AspenEnergyAnalyzerV7.3, Aspen Technology Inc., Cambridge, 2011.
  25. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M(Eds.), Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, National Renewable Energy Laboratory (NREL), Golden, CO, 2011.
  26. Mignard D, Chem. Eng. Res. Des., 92(2), 285 (2014)