화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.4, 535-541, August, 2017
도금 폐수 중 유가 금속 회수를 위한 이온교환섬유의 상용화기술
Commercialization of Ion Exchange Fiber System for Recovering Valuable Metals in Plating Wastewater
E-mail:
초록
Ag 200 ppm과 총유량 120 l/h의 기준으로 이온 교환 섬유 시스템을 제작하였다. 이 시스템은 이온교환 섬유로서 강염기성인 FIVAN A-6을 이용하였고, 이온교환 섬유의 교환이 용이하고 고정틀이 필요 없도록 고안된 이중관 형 이온 교환 섬유조로 구성되어있다. 이 시스템의 이온교환섬유의 Ag에 대한 이온교환 용량은 4.6 meq/g 이었으며, 공정조건 별로는 다음과 같은 결과를 얻었다. 흡착공정의 경우 유속의 영향을 확인한 후 40~90 l/h의 범위에서 운전하였으며, pH 7~12 범위에서는 Ag의 착이온 형성에 대한 pH의 영향이 없는 것으로 나타났다. 역세공정의 경우 60~120 l/h의 범위에서 Ag 회수율 실험을 수행하였으며, 역세용 화학물질로는 NaOH, NH4Cl, NaCl을 이용하여 비교실험을 하였고, 역세 화학물질이 고농도 일수록 탈착시간은 짧아지지만 몰당 탈착 효율은 저하되는 경향이었으므로 탈착시간과 농도의 균형을 잘 맞추어 운전해야 경제적 운전이 될 수 있음을 확인하였다. 강염기성 음이온 섬유인 FIVAN A-6와 이중관형 이온교환 섬유조를 이용하여 Ag 흡착율은 99.5% 이상, 총 Ag회수율은 96% 이상의 결과를 얻을 수 있었으며 상용화 가능함을 확인할 수 있었다.
On the basis of 200 ppm of Ag and 120 l/h of feed flow rate, we built a pilot plant of an ion exchange fiber system having an double tube type ion exchange chamber with strong base ion exchange fiber (FIVAN A-6) which was designed to replace fibers easily and to eliminate the need for a fixture. The following results were obtained for the double tube type of ion exchange fiber system with an ion exchange capacity of 4.6 meq/g for Ag. The adsorption process was operated in the range of 40~90 l/h after confirming the effect of the flow rate and, pH did not affect formation of complex ion of Ag in the range of pH 7~12. In the case of backwash process, the recovery rate of Ag was tested in the range of 60~120 l/h and comparative experiments were carried out using NaOH, NH4Cl, and NaCl as the chemicals for backwash. Although the desorption time was shortened at higher concentration, the desorption efficiency per mol was lowered. Therefore, it was confirmed that the desorption time and the concentration should be well balanced to operate economically. The desorption pattern of the backwash process is slower than the adsorption process and takes a lot of time. The results showed that the Ag adsorption ratio was 99.5% or more and the Ag recovery ratio was 96% or more, and commercialization was possible.
  1. Valverde JL, de Lucas A, Gonzalez M, Rodriguez JF, J. Chem. Eng. Data, 46, 1406 (2001)
  2. Yang LQ, Li YF, Jin XL, Ye ZF, Ma XJ, Wang LY, Liu YP, Chem. Eng. J., 168(1), 115 (2011)
  3. Chen CY, Chiang CL, Chen CR, Sep. Purif. Technol., 54(3), 396 (2007)
  4. Shukla SR, Pai RS, Shendarkar AD, Sep. Purif. Technol., 47(3), 141 (2006)
  5. Juang RS, Kao HC, Chen W, Sep. Purif. Technol., 49(1), 36 (2006)
  6. Donia AM, Atia AA, Elwakeel KZ, Sep. Purif. Technol., 42(2), 111 (2005)
  7. Fleming CA, Cromberge G, J. South. Afr. Inst. Min. Metall., 84, 125-137(1984).
  8. Fleming CA, Cromberge G, J. South. Afr. Inst. Min. Metall., 84, 369-378(1984).
  9. Kotze M, Green B, Mackenzie J, Virnig M, Dev. Miner. Process, 15, 603 (2005)
  10. Edebali S, Pehlivan E, Powder Technol., 301, 520 (2016)
  11. Schoeman E, Bradshawa SM, Akdogana G, Snyders CA, eksteenb JJ, International Journal of Mineral Processing, 162, 27-35(2017).
  12. Ha JW, Yi KB, Lee SH, Rhee YW, Kim JN, Korean Chem. Eng. Res., 46(2), 423 (2008)
  13. http://sfnews.co.kr/news/view.html (2014).