Applied Catalysis B: Environmental, Vol.217, 224-231, 2017
In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation
A novel nanocomposite photocatalyst for NO removal, Bi2O2CO3-MoS2-CNFs, was fabricated by an efficient method. This new photocatalyst performed impressively in the removal of NO at low concentration (600 ppb), with a maximum efficiency of 68% under visible-light irradiation, superior to most other visible-light photocatalysts. Its high performance was ascribed to the introduction of carbon nanofibers as carriers, and MoS2, which enhanced the absorption of visible light and accelerated the separation and transfer of electrons and holes. Photocurrent tests and electrochemical impedance spectroscopy also demonstrated that Bi2O2CO3-MoS2-CNFs had a high efficiency of interfacial charge separation, which is critical to improving the photocatalytic activity. Moreover, the membrane of the photocatalyst was stable and recyclable after multiple runs. All of these factors demonstrate its potential application in the removal of NO from air. (C) 2017 Published by Elsevier B.V.