Applied Surface Science, Vol.419, 893-900, 2017
Formation of hierarchical porous graphene films with defects using a nanosecond laser on polyimide sheet
The cost of effective preparation of graphene-based nanomaterials is a challenge in high-performance flexible electrodes. We demonstrated the formation of hierarchical porous graphene (HPG) films with defects from polyimide (PI) sheets using a high repetition rate nanosecond fiber laser. The honeycomb structure with mesopores and macropores can be rapidly induced on the polyimide by the localized focused laser beam in air atmosphere. Employing laser direct writing method, the one-step synthesis and patterning of conductive HPG films were achieved directly on the surface of polyimide sheets. The results show that the unique honeycomb porous structure on HPG film is composed of few-layer graphene or graphene stacks. The lattice structure of graphene nanoplatelets contains the Stone-Wales defects. Furthermore, there are a lot of small-size graphene nanoplatelets on the surface of HPG films with high content of edge defects. These two defects can not only enhance the adsorption without compromising on high diffusivity of ions, but also contribute to the infiltration and flow of electrolyte on the surface of electrode. The proposed one-step laser direct writing technique with highly valuable suitable for developing large-scale fabrication of conductive HPG based flexible electrodes at low-cost. (C) 2017 Elsevier B.V. All rights reserved.