화학공학소재연구정보센터
Biotechnology Progress, Vol.33, No.3, 658-665, 2017
Antibody Purification from CHO Cell Supernatant Using New Multimodal Membranes
This contribution describes strategies to purify monoclonal antibodies from Chinese hamster ovary (CHO) cell culture supernatant using newly designed multimodal membranes (MMMs). The MMMs were used for the capture step purification of human IgG(1) following a size-exclusion desalting column to remove chaotropic salts that interfere with IgG binding. The MMM column attained higher dynamic binding capacity than a Protein A resin column at an equivalent residence time of 1 min. The two-step MMM chromatography process achieved high selectivity for capturing hIgG(1) from the CHO cell culture supernatant, though the desalting step resulted in product dilution. Product purity and host cell protein (HCP) level in the elution pool were analyzed and compared to results from a commercial Protein A column. The product purity was >98% and HCP levels were <20 ppm for both purification methods. In addition, hIgG1 could be eluted from the MMM chromatography column at neutral pH, which is important for limiting the formation of aggregates; although slow elution dilutes the product. Overall, this paper shows that MMMs are highly effective for capture step purification of proteins and should be considered when Protein A cannot be used, e.g., for pH sensitive mAbs or proteins lacking an Fc binding domain. (C) 2017 American Institute of Chemical Engineers.