화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.4, 404-409, August, 2017
다양한 소수성 물질이 개질된 키토산 나노입자의 약물전달체로서 응용성 고찰
Application of Various Hydrophobic Moiety-modified Chitosan Nanoparticle as a Drug Delivery Carrier
E-mail:,
초록
천연고분자 키토산은 생체적합하고 생분해성의 특성뿐만 아니라 항암, 항균, 콜레스테롤 저하 등의 다양한 생체활성을 갖고 있어 의료용 분야에서 많이 응용되고 있다. 현재 키토산을 약물전달시스템에 응용한 다양한 약물이 담지 된 키토산 나노입자를 개발하여 질병을 치료할 수 있는 연구가 활발히 진행 중에 있다. 키토산에 존재하는 free 아민(-NH2) 그룹은 다양한 소수성기를 물리적.화학적 개질을 통해 결합이 가능하며 소수성기가 도입된 키토산은 물에 분산시 자기회합에 의한 shell-core 나노입자를 형성하고 core 부분에 다양한 난용성 약물을 담지하여 물에 대한 용해 도를 증가시킬 수 있으며, 단백질, 항암제, 백신 등의 다양한 약물을 담지하여 기존 약물의 부작용을 최소화하여 치료 효과를 극대화할 수 있다. 또한, 키토산에 도입된 소수성기에 따라 입자의 크기 및 방출 속도를 제어할 수 있어 다양한 의료용 분야에 응용이 가능하다. 본 총설에서는 다양한 소수성기가 도입된 키토산 나노입자의 제조 및 특성과 특성에 따른 약물전달시스템의 응용성에 관하여 논의 하고자 한다.
Natural polymer chitosan has been widely applied to medical fields due to its biochemical activities such as anticancer, antibacterial and lowering cholesterol in addition to biocompatibility and biodegradability. Currently, researches are being actively conducted to develop various drug-encapsulated chitosan nanoparticles for curing different diseases by applying chitosan to a drug delivery system. The free amine (-NH2) group present in chitosan can bind to various hydrophobic groups by physical and chemical modification and the chitosan with hydrophobic groups can form shell-core nanoparticles by self-assembly when dispersed in water. In addition, an insoluble drug can increase the solubility against water when it was encapsulated in the core of chitosan nanoparticles. Also, the therapy effect can be maximized by minimizing side effects of drugs such as proteins, anticancer drugs and vaccines when they were encapsulated in the core of chitosan nanoparticles. Moreover, it is possible to control the particle size and release rate according to the hydrophobic group introduced to chitosan, so that it can be applied to a wide range of medical fields. The purpose of this review is to discuss the preparation and property of chitosan nanoparticles modified with various hydrophobic groups, and the application to drug delivery systems according to their property.
  1. Jaiswal M, Dudhe R, Sharma PK, Biotechniques, 5, 123 (2015)
  2. Khan I, Khan M, Umar MN, Oh DH, IET Nanobiotechnol., 9, 396 (2015)
  3. Pandey R, Khuller GK, Indian J. Exp. Biol., 44, 357 (2006)
  4. Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ, J. Neuroimmune Pharmacol., 1, 340 (2006)
  5. Dineshkumar B, Krishnakumar K, Bhatt AR, Paul D, Cherian J, John A, Suresh S, Indian J. Cancer, 52, 262 (2015)
  6. Tobin MJ, Jenouri G, Danta I, Kim C, Watson H, Sackner MA, Am. Rev. Respir. Dis., 126, 670 (1982)
  7. Hori K, Suzuki M, Tanda S, Saito S, Zhang Q, Int. J. Oncol., 2, 289 (1993)
  8. Semalty A, Semalty M, Singh R, Saraf SK, Saraf S, Technol. Health Care, 15, 237 (2007)
  9. Bharti C, Nagaich U, Pal AK, Gulati N, Int. J. Pharm. Investig., 5, 124 (2015)
  10. Krishnamoorthy B, Karanam V, Chellan VR, Siram K, Natarajan TS, Gregory M, J. Drug Target., 22, 469 (2014)
  11. Hao Y, Wang L, Zhang B, Li D, Meng D, Shi J, Zhang H, Zhang Z, Zhang Y, Int. J. Nanomed., 11, 1759 (2016)
  12. Vyas A, Sonker AK, Gidwani B, ScientificWorldJournal, 2014, 276260 (2014)
  13. Songsurang K, Siraleartmukul K, Muangsin N, J. Microencapsul., 32(5), 450 (2015)
  14. Bi XL, Liu X, Zu Q, Di LQ, Zhongguo Zhong Yao Za Zhi, 38, 3638 (2013)
  15. Patel MP, Patel RR, Patel JK, J. Pharm. Pharm. Sci., 13, 536 (2010)
  16. Nagpal K, Singh SK, Mishra DN, Chem. Pharm. Bull., 58, 1423 (2010)
  17. Hu L, Meng X, Xing R, Liu S, Chen X, Qin Y, Yu H, Li P, Bioorg. Med. Chem. Lett., 26, 4548 (2016)
  18. Je JY, J. Chitin Chitosan, 20, 245 (2015)
  19. Zimoch-Korzycka A, Bobak L, Int. J. Mol. Sci., 17(9), 1436 (2016)
  20. Fan L, Zou S, Ge H, Xiao Y, Wen H, Feng H, Liu M, Nie M, Int. J. Biol. Macromol., 93, 636 (2016)
  21. Kim TH, Park JK, Choi CY, Jang MK, Nah JW, J. Chitin Chitosan, 17, 37 (2012)
  22. Jeong GW, Park SC, Choi CY, Nam JP, Kim TH, Choi SK, Park JK, Nah JW, Int. J. Pharm., 488, 165 (2015)
  23. Zhang C, Ding Y, Ping Q, Yu LL, J. Agric. Food Chem., 54, 8409 (2006)
  24. Huo M, Zhang Y, Zhou J, Zou A, Yu D, Wu Y, Li J, Li H, Int. J. Pharm., 394, 162 (2010)
  25. Yan T, Li D, Li J, Cheng F, Cheng J, Huang Y, He J, Colloids Surf. B: Biointerfaces, 145, 526 (2016)
  26. Zhang C, Ding Y, Yu LL, Ping Q, Colloids Surf. B: Biointerfaces, 55, 192 (2007)
  27. Lin HR, Chang PC, J. Biomed. Mater. Res., 101, 689 (2013)
  28. Qu G, Zhu X, Zhang C, Ping Q, Drug Deliv., 16, 363 (2009)
  29. Singh J, Dutta PK, Int. J. Biol. Macromol., 45, 384 (2009)
  30. Malekigorji M, Curtis ADM, Hoskins C, J. Nanomed. Res., 1(1), 1 (2014)
  31. Liu C, Wu Y, Zhao L, Huang X, Int. J. Biol. Macromol., 78, 189 (2015)
  32. Siafaka PI, Titopoulou A, Koukaras EN, Kostoglou M, Koutris E, Karavas E, Bikiaris DN, Int. J. Pharm., 495, 249 (2015)
  33. Heinze VM, Actis AB, Int. J. Food Sci. Nutr., 63, 66 (2012)
  34. Thomson AB, J. Lipid Res., 21, 687 (1980)
  35. Xie YT, Du YZ, Yuan H, Hu FQ, Int. J. Nanomed., 7, 3235 (2012)
  36. Tajmir-Riahi HA, Nafisi S, Sanyakamdhorn S, Agudelo D, Chanphai P, Methods Mol. Biol., 1141, 165 (2014)
  37. Meng LL, Huang W, Wang DL, Huang XH, Zhu XY, Yan DY, Biomacromolecules, 14(8), 2601 (2013)
  38. Chen Z, Zhang L, Song Y, He J, Wu L, Zhao C, Xiao Y, Li W, Cai B, Cheng H, Li W, Biomaterials, 52, 240 (2015)
  39. Lee JY, Crake C, Teo B, Carugo D, de Saint Victor M, Seth A, Stride E, Adv. Healthc. Mater., 6, 1 (2017)
  40. Wu M, Guo K, Dong H, Zeng R, Tu M, Zhao J, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 45, 162 (2014)
  41. Chae SY, Son S, Lee M, Jang MK, Nah JW, J. Control. Release, 109, 330 (2005)
  42. Zhou HF, Yu WT, Guo X, Liu XD, Li N, Zhang Y, Ma XJ, Biomacromolecules, 11(12), 3480 (2010)
  43. Kim K, Kwon S, Park JH, Chung H, Jeong SY, Kwon IC, Biomacromolecules, 6(2), 1154 (2005)
  44. Kim YH, Gihm SH, Park CR, Lee KY, Kim TW, Kwon IC, Chung H, Jeong SY, Bioconjug. Chem., 12, 932 (2001)
  45. Shchelkonogov VA, Sorokoumova GM, Baranova OA, Chekanov AV, Klochkova AV, Kazarinov KD, Solovieva EY, Fedin AI, Shvets VI, Biomed. Khim., 62, 577 (2016)
  46. Moura FA, de Andrade KQ, dos Santos JC, Goulart MO, Curr. Top. Med. Chem., 15, 458 (2015)
  47. Liu G, Li K, Wang H, J. Biomater. Appl., 31, 1039 (2017)
  48. Yang SD, Zhu WJ, Zhu QL, Chen WL, Ren ZX, Li F, Yuan ZQ, Li JZ, Liu Y, Zhou XF, Liu C, Zhang XN, J. Biomed. Mater. Res., 105, 1114 (2016)
  49. How SC, Chen YF, Hsieh PL, Wang SS, Jan JS, Colloids Surf. B: Biointerfaces, 153, 244 (2017)
  50. Wei RR, Cheng L, Zheng M, Cheng R, Meng FH, Deng C, Zhong ZY, Biomacromolecules, 13(8), 2429 (2012)
  51. Philippova OE, Volkov EV, Sitnikova NL, Khokhlov AR, Desbrieres J, Rinaudo M, Biomacromolecules, 2(2), 483 (2001)
  52. Zhu L, Tu C, Zhu B, Su Y, Pang Y, Yan D, Wu J, Zhu X, Polym. Chem., 2, 1761 (2011)
  53. Zhou Y, Yu J, Feng X, Li W, Wang Y, Jin H, Huang H, Liud Y, Fanac D, RSC Adv., 6, 31391 (2016)