화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.4, 467-472, August, 2017
Aquathermolysis 반응에 의한 감압잔사유의 개질
Refining of Vacuum Residues by Aquathermolysis Reaction
E-mail:
초록
본 연구에서는 aquathermolysis 반응을 이용하여 감압잔사유(VR)의 개질 반응을 실시하였다. 감압잔사유는 30 bar, 300℃ 이상에서 24 h 동안 수증기(steam)와 반응하면, 구성성분 중에서 레진류와 아스팔텐류가 감소하고, 포화탄화수소류 (saturates)나 방향족탄화수소류(aromatics)가 증가하는 경향을 보였다. 이러한 경향은 수증기(steam)량이 감압잔사유와 동일 중량부 이상으로 과량 사용 시 더 확연하였다. 300 ℃, 30 bar 이상에서 48 h 반응하는 경우 VR 조성물은 초기상 태(S/A/R/A = 7.3%/43.7%/25.6%/23.5%)에서 최종상태(S/A/R/A = 6.8%/57%/12.2% /24.0%)로 레진류의 함량이 전체에서 13% 정도 감소하고 방향족화합물들은 13% 정도 증가하였다. 이때 점도는 880,000 cp에서 290,000 cp로 68% 정도 감소 하였다. 수소를 제공하기 쉬운 데칼린(decalin)을 10% 첨가하는 경우 24 h에 점도가 68% 정도 감소하였고, VR 조성물 은 초기상태(S/A/R/A = 7.3%/43.7%/25.6% /23.5%)에서 최종상태(S/A/R/A = 4.5%/63.5%/12.5%/20.0%)로 레진류 및 아스 팔텐의 함량이 49%에서 17%가 감소하였고, 방향족 화합물의 함량이 63.5%로 극대화되었다. Aquathermolysis 반응으로 형성된 기체층을 포집하여 GC-MS spectroscopy로 분석한 결과 에틸벤젠, 옥탄, 디메틸벤젠 등 다양한 탄화수소 화합물 들이 검출됨을 확인하였다.
In this study, the reforming reaction of vacuum residue (VR) was carried out using aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above 300 ℃ for 24 h. This tendency became more evident when the amount of steam used was excessive than the amount of VR. When the aquathermolysis reaction was performed at 300 ℃ and 30 bar for 48 h, the VR composition was changed from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to final state (S/A/R/A = 6.8%/57%/12.2%/24.0%), and the contents of the resins decreased by 13% and the aromatic compounds increased by 13%. The viscosity decreased from 880,000 cp to 290,000 cp by 68%. When 10% of decalin, which is easy to provide hydrogen, was added, the viscosity decreased by 68% in 24 h. The VR composition showed a reduction in the contents of resins and asphaltenes from 49% to 17% from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to the final state (S/A/R/A = 4.5%/63.5%/12.5%/20.0%), and the content of aromatics was maximized to 63.5%. The gas layer formed by the aquathermolysis reaction in the reactor chamber was collected and analyzed by GC-MS spectroscopy. As a result, various hydrocarbon compounds such as ethylbenzene, octane and dimethylbenzene were detected.
  1. Meyer RF, Attanasi ED, Freeman PA, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, U.S. Department of Interior & U.S. Geological Survey Open File-Report 2007-1084 (2007).
  2. Muraza O, J. Anal. Appl. Pyrolysis, 114, 1 (2015)
  3. Kapadia PR, Kallos MS, Gates ID, Fuel Process. Technol., 131, 270 (2015)
  4. Muraza O, Galadima A, Fuel, 157, 219 (2015)
  5. Lee HC, Park SK, Appl. Chem. Eng., 27(4), 343 (2016)
  6. Hyne JB, Aquathermolysis of heavy oils In: Meyer RF, Wynn JC, Olson JC (eds.), The Future of Heavy Crude and Tar Sands: 2nd International Conference, Caracas, Venezuela, 7-17 February 1982, pp. 404-411, McGraw Hill, New York (1984).
  7. Bera A, Babadagli T, Appl. Energy, 151, 206 (2015)
  8. Ahmadun FR, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ, J. Hazard. Mater., 170(2-3), 530 (2009)
  9. Peng J, Tang GQ, Kovscek AR, J. Pet. Sci. Eng., 66, 47 (2009)
  10. Zhao F, Wang, X Wang Y, Shi Y, J. Chem. Pharm. Res., 6(5), 2037 (2014)
  11. Maity SK, Ancheyta J, Marroquin G, Energy Fuels, 24, 2809 (2010)
  12. Wong RCK, Maini BB, J. Pet. Sci. Eng., 55, 259 (2007)
  13. Wang J, Yuan YZ, Zhang L, Wang R, J. Pet. Sci. Eng., 66, 69 (2009)
  14. Wu C, Lei GL, Yao CJ, Sun KJ, Gai PY, Cao YB, J. Fuel Chem. Technol., 38, 684 (2010)
  15. Xu HX, Pu CS, J. Fuel. Chem. Technol., 39, 606 (2011)
  16. Jing P, Li Q, Han M, Sun D, Jia L, Fang W, Shiyou Huagong / Petrochem. Technol., 36, 237-241 (2007).
  17. Ovalles C, Rengel-Unda P, Bruzual J, Salazar A, Fuel Chem., 48, 59 (2003)
  18. Ovalles C, Vallejos C, Vasquez T, Rojas I, Ehrman U, Benitez JL, Martinez R, Pet. Sci. Technol., 21, 255 (2003)
  19. Liu YJ, Fan HF, Energy Fuels, 16(4), 842 (2002)
  20. Ovalles C, Unda PR, Bruzual J, Salazar A, Am. Chem. Soc. Div. Fuel. Chem., 48, 59 (2003)
  21. Li J, Chen YL, Liu HC, Wang PJ, Liu F, Energy Fuels, 27(5), 2555 (2013)
  22. Wang H, Wu Y, He L, Liu ZW, Energy Fuels, 26(11), 6518 (2012)