Applied Chemistry for Engineering, Vol.28, No.4, 467-472, August, 2017
Aquathermolysis 반응에 의한 감압잔사유의 개질
Refining of Vacuum Residues by Aquathermolysis Reaction
E-mail:
초록
본 연구에서는 aquathermolysis 반응을 이용하여 감압잔사유(VR)의 개질 반응을 실시하였다. 감압잔사유는 30 bar, 300℃ 이상에서 24 h 동안 수증기(steam)와 반응하면, 구성성분 중에서 레진류와 아스팔텐류가 감소하고, 포화탄화수소류 (saturates)나 방향족탄화수소류(aromatics)가 증가하는 경향을 보였다. 이러한 경향은 수증기(steam)량이 감압잔사유와 동일 중량부 이상으로 과량 사용 시 더 확연하였다. 300 ℃, 30 bar 이상에서 48 h 반응하는 경우 VR 조성물은 초기상 태(S/A/R/A = 7.3%/43.7%/25.6%/23.5%)에서 최종상태(S/A/R/A = 6.8%/57%/12.2% /24.0%)로 레진류의 함량이 전체에서 13% 정도 감소하고 방향족화합물들은 13% 정도 증가하였다. 이때 점도는 880,000 cp에서 290,000 cp로 68% 정도 감소 하였다. 수소를 제공하기 쉬운 데칼린(decalin)을 10% 첨가하는 경우 24 h에 점도가 68% 정도 감소하였고, VR 조성물 은 초기상태(S/A/R/A = 7.3%/43.7%/25.6% /23.5%)에서 최종상태(S/A/R/A = 4.5%/63.5%/12.5%/20.0%)로 레진류 및 아스 팔텐의 함량이 49%에서 17%가 감소하였고, 방향족 화합물의 함량이 63.5%로 극대화되었다. Aquathermolysis 반응으로 형성된 기체층을 포집하여 GC-MS spectroscopy로 분석한 결과 에틸벤젠, 옥탄, 디메틸벤젠 등 다양한 탄화수소 화합물 들이 검출됨을 확인하였다.
In this study, the reforming reaction of vacuum residue (VR) was carried out using aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above 300 ℃ for 24 h. This tendency became more evident when the amount of steam used was excessive than the amount of VR. When the aquathermolysis reaction was performed at 300 ℃ and 30 bar for 48 h, the VR composition was changed from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to final state (S/A/R/A = 6.8%/57%/12.2%/24.0%), and the contents of the resins decreased by 13% and the aromatic compounds increased by 13%. The viscosity decreased from 880,000 cp to 290,000 cp by 68%. When 10% of decalin, which is easy to provide hydrogen, was added, the viscosity decreased by 68% in 24 h. The VR composition showed a reduction in the contents of resins and asphaltenes from 49% to 17% from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to the final state (S/A/R/A = 4.5%/63.5%/12.5%/20.0%), and the content of aromatics was maximized to 63.5%. The gas layer formed by the aquathermolysis reaction in the reactor chamber was collected and analyzed by GC-MS spectroscopy. As a result, various hydrocarbon compounds such as ethylbenzene, octane and dimethylbenzene were detected.
- Meyer RF, Attanasi ED, Freeman PA, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, U.S. Department of Interior & U.S. Geological Survey Open File-Report 2007-1084 (2007).
- Muraza O, J. Anal. Appl. Pyrolysis, 114, 1 (2015)
- Kapadia PR, Kallos MS, Gates ID, Fuel Process. Technol., 131, 270 (2015)
- Muraza O, Galadima A, Fuel, 157, 219 (2015)
- Lee HC, Park SK, Appl. Chem. Eng., 27(4), 343 (2016)
- Hyne JB, Aquathermolysis of heavy oils In: Meyer RF, Wynn JC, Olson JC (eds.), The Future of Heavy Crude and Tar Sands: 2nd International Conference, Caracas, Venezuela, 7-17 February 1982, pp. 404-411, McGraw Hill, New York (1984).
- Bera A, Babadagli T, Appl. Energy, 151, 206 (2015)
- Ahmadun FR, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ, J. Hazard. Mater., 170(2-3), 530 (2009)
- Peng J, Tang GQ, Kovscek AR, J. Pet. Sci. Eng., 66, 47 (2009)
- Zhao F, Wang, X Wang Y, Shi Y, J. Chem. Pharm. Res., 6(5), 2037 (2014)
- Maity SK, Ancheyta J, Marroquin G, Energy Fuels, 24, 2809 (2010)
- Wong RCK, Maini BB, J. Pet. Sci. Eng., 55, 259 (2007)
- Wang J, Yuan YZ, Zhang L, Wang R, J. Pet. Sci. Eng., 66, 69 (2009)
- Wu C, Lei GL, Yao CJ, Sun KJ, Gai PY, Cao YB, J. Fuel Chem. Technol., 38, 684 (2010)
- Xu HX, Pu CS, J. Fuel. Chem. Technol., 39, 606 (2011)
- Jing P, Li Q, Han M, Sun D, Jia L, Fang W, Shiyou Huagong / Petrochem. Technol., 36, 237-241 (2007).
- Ovalles C, Rengel-Unda P, Bruzual J, Salazar A, Fuel Chem., 48, 59 (2003)
- Ovalles C, Vallejos C, Vasquez T, Rojas I, Ehrman U, Benitez JL, Martinez R, Pet. Sci. Technol., 21, 255 (2003)
- Liu YJ, Fan HF, Energy Fuels, 16(4), 842 (2002)
- Ovalles C, Unda PR, Bruzual J, Salazar A, Am. Chem. Soc. Div. Fuel. Chem., 48, 59 (2003)
- Li J, Chen YL, Liu HC, Wang PJ, Liu F, Energy Fuels, 27(5), 2555 (2013)
- Wang H, Wu Y, He L, Liu ZW, Energy Fuels, 26(11), 6518 (2012)