Fuel, Vol.203, 825-831, 2017
Assessment of a conical spouted with an enhanced fountain bed for biomass gasification
This study pursues the development and characterization of a fountain enhanced spouting regime. This novel gas solid-contact method combines the advantages of fountain confined conical spouted beds with those of draft tube conical spouted beds. The aim of confining the fountain, and therefore attaining a clearly differentiated regime, is to progress towards a highly efficient conical spouted bed reactor for biomass gasification. Accordingly, and in order to delve into the knowledge of the regimes attained in this contact method, a study has been conducted by analyzing the influence operating parameters (temperature, gas flow rate, particle size and bed mass) and draft tube geometry (tube diameter and entrainment zone height) have on hydrodynamics. Fountain confinement allows greatly enlarging the fountain region, especially the height, which improves the contact between reacting gases and the catalyst. Moreover, the residence time distribution, and therefore the average residence time, may be optimized by confining and enlarging the fountain zone. These features promote tar cracking and so increase biomass conversion efficiency, which are highly relevant facts for use of conical spouted bed reactors in gasification. (C) 2017 Elsevier Ltd. All rights reserved.