Inorganic Chemistry, Vol.56, No.8, 4271-4279, 2017
Canted Antiferromagnetism on Rectangular Layers of Fe2+ in Polymorphic CaFeSeO
From stoichiometric amounts of CaO, Fe, and Se, pure powders and single crystals of quaternary Ca-infinity(2)[FeSe2/2O2/2] can be obtained by solid-state reaction and self-flux growth, respectively. The as-synthesized compound exhibits a polymorphic crystal structure, where the two modifications have different stacking sequences of (2)(infinity)[FeSe2/2O2/2](2-) layers. The two polymorphs have similar unit cells but different crystal symmetries (Cmc2(1), and Pnma), of which the former is non-centrosymmetric. Fe is divalent (d(6)) and high-spin, as proven by X-ray spectroscopy, Mossbauer spectroscopy, and powder neutron diffraction data. The latter two, in combination with magnetic susceptibility and specific heat data, reveal a long-range antiferromagnetic spin order (T-N = 160 K) with a minor spin canting. CaFeSeO is an electronic insulator, as confirmed by resistivity measurements and density functional theory calculations. The latter also suggest a relatively small energy difference between the two polymorphs, explaining their intimate intergrowth.