화학공학소재연구정보센터
International Journal of Multiphase Flow, Vol.94, 201-208, 2017
UDV measurements of single bubble rising in a liquid metal Galinstan with a transverse magnetic field
Liquid metal is an important type of energy transport carrier in nuclear reactors, such as in accelerator driven sub-critical systems, fusion reactors and spallation neutron source devices. It is necessary to conduct research for bubbles rising in a liquid metal under different magnetic field intensities. The Perspex container is positioned concentrically inside a transverse magnetic field, which provides a homogeneous DC longitudinal magnetic field that passes through the fluid district. The coils are supplied with maximum field strength, of 1.97 T. The equivalent diameter of the bubble is 3.1-5.6 mm. The Ultrasonic Doppler Velocimetry (UDV) method is used to evaluate the internal flow velocity of opaque liquid metals. Research shows that the influence of the Lorenz force on the bubble ascension velocity is not simply positive or negative. The magnetic field inhibits the ascension velocity of small bubbles with diameters of 3.1 mm and 3.4 mm. The terminal velocity for large bubbles with diameters of 4.57 mm, 5.15 mm and 5.6 mm is higher under a weak magnetic field than without a magnetic field. The positive effect happens under strong magnetic intensity. The target is to obtain the hydro-dynamical relationships between the terminal velocity, drag coefficient, the Edtvos number, Reynolds number, and Stuart number in a strong magnetic field using a multiple regression method to reveal that the mechanism of the induced current's restraining influence determines the ascension velocity of the bubble in viscous electric liquids with a strong magnetic field. (C) 2017 Elsevier Ltd. All rights reserved.