Journal of Colloid and Interface Science, Vol.502, 210-218, 2017
Solubilisation of oils in aqueous solutions of a random cationic copolymer
Hypothesis: Reports of random copolymers capable of solubilising hydrophobic oils are rare. This is primarily because random copolymers are unlikely to self-assemble into suitable aggregates (or micelles) in water. A random copolymer with a "blocky" (or lumpy) microstructure may have potential to solubilise hydrophobic oils in water. This type of polymer would have advantages over block copolymers which are more laborious and costly to synthesise. Experiments: The solubilising capacity of a blocky random copolymer, namely poly(methyl methacrylate-co-2-dimethylaminoethyl methacrylate) (PMMA-co-PDMAEMA) is assessed by UV-visible spectroscopy and compared with common reference surfactants. The relative solubilising performance of random copolymers (across a narrow range of DMAEMA mol % fraction) for aromatic and aliphatic oils was also studied. The morphology of the aggregates was monitored as a function of the solubilisation capacity by small-angle neutron scattering (SANS) and dynamic-light scattering (DLS). Findings: Similarly to well-defined block copolymers, these random copolymers have a specific preference for solubilising aromatic over aliphatic oils. Increasing hydrophobicity of the copolymer enhances the solubilisation capacity. SANS has highlighted that aggregates become swollen and more uniform/spherical with increasing concentration of aromatic solubilisate, and that the aromatic solubilisate partitions throughout the random copolymer aggregates. (C) 2017 Elsevier Inc. All rights reserved.