Journal of Materials Science, Vol.52, No.15, 9115-9128, 2017
Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: a proof-of-concept study
Deposition of bioceramic coatings on medical implants is a valuable strategy to impart key added values, such as bioactivity. While flat coatings can be easily produced by enameling and similar techniques, applying a bioactive glass layer on surfaces with curved geometry is a great challenge from a technological viewpoint. In this work, for the first time we demonstrated the feasibility of bioactive glass coatings produced by laser cladding on alumina/zirconia ceramic acetabular cups for hip joint prosthesis. Laser-cladded glass coatings can be fabricated in a dense (pore-free) or porous form. Morphological analyses by scanning electron microscopy and micro-computed tomography revealed the good quality of joining at the coating/substrate interface and the good interconnectivity of the pores (size within 200-400 mu m) in the outer porous layer. Indentation tests at the interface confirmed the excellent joining between glass and ceramic substrate. These coatings also exhibited a good bioactive behavior in vitro, as demonstrated by the formation of a surface apatite layer upon immersion studies in simulated body fluid.