화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.139, No.20, 6839-6842, 2017
A Biphilic Phosphetane Catalyzes N-N Bond-Forming Cadogan Heterocyclization via P-III/P-V=O Redox Cycling
A small-ring phosphacycle, 1,2,2,3,4,4-hexamethylphosphetane, is found to catalyze deoxygenative N-N bond-forming Cadogan heterocyclization of o-nitrobenzaldimines, o-nitroazobenzenes, and related substrates in the presence of hydrosilane terminal reductant. The reaction provides a chemoselective catalytic synthesis of 2H-indazoles, 2H-benzotriazoles, and related fused heterocyclic systems with good functional group compatibility. On the basis of both stoichiometric and catalytic mechanistic experiments, the reaction is proposed to proceed via catalytic P-III/P-V=O cycling, where DFT modeling suggests a turnover-limiting (3+1) cheletropic addition between the phosphetane catalyst and nitroarene substrate. Strain/distortion analysis of the (3+1) transition structure highlights the controlling role of frontier orbital effects underpinning the catalytic performance of the phosphetane.