Langmuir, Vol.33, No.27, 6826-6837, 2017
Multicolour Electrochromic Film Based on a TiO2@poly[Ni(sa/en)] Nanocomposite with Excellent Electrochemical Stability
We report the electrochromic properties of a polymeric nanocomposite prepared by potentiodynamic deposition of transition-metal complex [Ni(3-Mesalen)], designated as [1], in the presence of TiO2 nanoparticles (NPs) with an average size of 9.7 +/- 1.1 nm. Entrapment of TiO2 NPs in the poly[1] matrix was confirmed by several techniques. The nanocomposite TiO2@poly[1] films showed similar electrochemical responses to the original (nanoparticle-free) poly[1] films, but with higher electroactive surface coverages (G), showing the advantage of the nanocomposite preparation. The results indicated that the electronic structure of poly[1] was retained in the nanocomposite; nonetheless, a lower e value was obtained for the charge-transfer band of the former, revealing superior stability of the nanocomposite for ligand high oxidation states. The TiO2@poly[1] nanocomposite showed interesting color changes, from yellow (reduced state) to green and russet (oxidized states), with enhanced electrochemical stability, demonstrated by a charge loss of only 7.3% over ca. 10?000 redox cycles surpassing the original polymer film stability: the loss of electroactivity is a factor of ca. 2 less than for pristine poly[1]. Furthermore, an enhancement of 16.7% in the optical modulation (Delta OD = 0.48) was also observed for the nanocomposite, confirming the benefit of TiO2 incorporation into the EC properties of the original polymer film.