화학공학소재연구정보센터
Process Biochemistry, Vol.58, 120-127, 2017
Directed immobilization of CGTase: The effect of the enzyme orientation on the enzyme activity and its use in packed-bed reactor for continuous production of cyclodextrins
In this study, two different approaches were assessed in order to direct the immobilization of a cyclodextrin glycosyltransferase on functionalized silica support, one by amino groups using glutaraldehyde activation (Si-NH-G-CGTase) and other by disulfide bond through the Cys on the enzyme surface (Si-SH-CGTase). The efficiency of the immobilization of the enzyme by the Cys in Si-SH was four times higher than with the amino group linkage in Si-NH-G (2.86% and 11.91%, respectively). After immobilization, the optimum pH remained at 5.5 for the two derivatives and the optimum temperature was 70 degrees C for the free enzyme, 80 degrees C for Si-SH-CGTase and 90 degrees C for Si-NH-G-CGTase. Both preparations were used for continuous production of cyclodextrins, and Si-NH-G-CGTase presented higher total productivity, retaining 100% of its initial activity for at least 200 h, while the Si-SH-CGTase presented only 40% at the same time. The Si-SH-CGTase could be reloaded with new enzymes linked by disulfide bonds and was able to be used for more than 200 h.