Solar Energy, Vol.150, 177-191, 2017
Multi-agent based operational cost and inconvenience optimization of PV-based microgrid
The integration of solar power generation into microgrid systems has become very popular due to its positive environmental aspects and cost effectiveness. Nevertheless the existence of natural intermittency and fluctuations in PV generation incurs extra cost or service interruption in PV-based microgrids. The power generation of PV systems follows a natural schedule based on a sunny day. Similarly, the usage profiles in a microgrid are known from experience. When there is a mismatch in load or generation schedule, the system has to react to maintain a balance. In this work, both a centralized and a decentralized demand-responsive multi-agent control and management system are devised which include backup diesel generation and load curtailment. The latter affects user satisfaction. Wpose new realistic models to measure user satisfaction depending on the type of appliance curtailed. Our simulation shows that the inclusion of demand-side management lowers the cost of a mismatch even when user satisfaction is considered. Expectedly, the centralized implementation achieves a lower cost in more difficult conditions - when the peak consumption happens earlier than anticipated - but the decentralised approach provides acceptable cost levels when a centralized model cannot be implemented. (C) 2017 Elsevier Ltd. All rights reserved.