화학공학소재연구정보센터
Solar Energy, Vol.147, 202-208, 2017
Hydrothermally tailored anatase TiO2 nanoplates with exposed {111} facets for highly efficient dye-sensitized solar cells
TiO2 nanostructures with unique morphology, pseudo-square shaped, non-aggregated and exposed facets are of great interest in several fields including photovoltaic applications. In particular, 1-D TiO2 nanorod or 2-D TiO2 nanosheet based dye-sensitized solar cells (DSSCs) often show promising photovoltaic performance due to their 1-D and 2-D morphologies, respectively. Therefore, exploring TiO2 with new nanostructure is essential. In this work, we report the synthesis of non-aggregated anatase TiO2 nanoplates with {111} facets from TiOF2 crystals by two-step hydrothermal process. The prepared TiO2 nanoplates were employed as a supplementary light scattering layer in the photoelectrode, which resulted in 10% improvement in the photovoltaic performance of DSSC in comparison with the photoelectrode without TiO2 scattering layer. Such improvements were attributed to the enhancement in light scattering due to the pseudo-square shaped 2-D plate-like morphology, higher dye loading, increase in electron lifetime and the decrease in electron recombination, which were examined by photovoltaic characterization, impedance analysis, UV-vis diffuse reflectance and absorbance spectra. (C) 2017 Elsevier Ltd. All rights reserved.