화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.53, 317-324, September, 2017
Au/Co3O4/CeO2 heterostructures: Morphology controlling, junction formation and enhanced catalysis performance
E-mail:
Co3O4 nanochain and Co3O4/CeO2 heterostructures were prepared via an electrospinning process and subsequent calcination. The formation and shape evolution from Co3O4 nanochains to Co3O4/CeO2 composite nanobelts were investigated, suggesting that both components and preparation parameters play important roles in resulted morphology and properties. Homogeneous Co3O4/CeO2 junctions in belt samples were formed towards enhanced catalysis performance. Well-dispersed Au nanoparticles were deposited on Co3O4/CeO2 composite nanostructures or doped inside through reduction and direct calcination route method, respectively. The loading of Au nanoparticles significantly enhanced catalytic performance with onset CO conversion at 100 °C and resulted in CO conversion over at 127 °C.
  1. Loscertales IG, Barrero A, Marquez M, Spretz R, Velarde-Ortiz R, Larsen G, J. Am. Chem. Soc., 126(17), 5376 (2004)
  2. Fu G, Mao D, Sun S, Yu J, Yang Z, J. Ind. Eng. Chem., 31, 283 (2015)
  3. Kim HG, Borse PH, Choi W, Lee JS, Angew. Chem.-Int. Edit., 44, 4585 (2005)
  4. Kargar A, Jing Y, Kim SJ, Riley CT, Pan X, Wang D, ACS Nano, 7, 11112 (2013)
  5. Rawalekar S, Mokari T, Adv. Energy Mater, 3, 12 (2013)
  6. Tavakoli MM, Aashuri H, Simchi A, Kalytchuk S, Fan Z, J. Phys. Chem. C, 119, 18886 (2015)
  7. Liu Y, Chen HS, Li J, Yang P, RSC Adv., 5, 37585 (2015)
  8. Lahousse C, Bernier A, Grange P, Delmon B, Papaefthimiou P, Ioannides T, Verykios X, J. Catal., 178(1), 214 (1998)
  9. Liu K, Huang X, Wang H, Li F, Tang Y, Li J, Shao M, ACS Appl. Mater. Interfaces, 8, 34422 (2016)
  10. Xu J, Gao P, Zhao TS, Energy Environ. Sci., 5, 5333 (2012)
  11. Li H, Wu S, Wu CY, Wang L, Li L, Shih K, Catal. Environ. Sci. Technol., 49, 7373 (2015)
  12. Dai Y, Fei ZY, Xu XH, Chen X, Tang JH, Cui MF, Qiao X, Can. J. Chem. Eng., 94(6), 1140 (2016)
  13. Zhen JM, Wang X, Liu DP, Song SY, Wang Z, Wang YH, Li JQ, Wang F, Zhang HJ, Chem. Eur. J., 20, 1 (2014)
  14. Wang F, Wang X, Liu D, Zhen J, Li J, Wang Y, Zhang H, ACS Appl. Mater. Interfaces, 6, 22216 (2014)
  15. Liu Y, Yang P, Li J, Matras-Postolek K, Yue Y, Huang B, RSC Adv., 5, 98500 (2015)
  16. Liu YS, Yang P, Li J, Matras-Postolek K, Yue YL, Mater. Chem. Phys., 186, 312 (2017)
  17. Epling WS, Hoflund GB, Weaver JF, Tsubota S, Haruta M, J. Phys. Chem., 100(23), 9929 (1996)
  18. Liotta LF, Di Carlo G, Pantaleo G, Venezia AM, Deganello G, Appl. Catal. B: Environ., 66(3-4), 217 (2006)
  19. Liotta LF, Carlo GD, Longo A, Pantaleo G, Venezia AM, Catal. Today, 139, 174 (2008)
  20. Xue L, Zhang CB, He H, Teraoka Y, Appl. Catal. B: Environ., 75(3-4), 167 (2007)
  21. Burroughs P, Hamnett A, Orchard AF, Thornton G, J. Chem. Soc.-Dalton Trans., 17, 1686 (1976)
  22. Park ED, Lee JS, J. Catal., 186(1), 1 (1999)
  23. Moulder JF, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics, Eden Prairie, MN, 1995.
  24. Pestryakova AN, Luninb VV, Kharlanovb AN, Kochubeyc DI, Bogdanchikova N, Stakheev AY, J. Mol. Struct., 642, 129 (2002)
  25. Pestryakov AN, Lunin VV, J. Mol. Catal. A-Chem., 158(1), 325 (2000)
  26. Pojanavaraphan C, Luengnaruemitchai A, Gulari E, J. Ind. Eng. Chem., 20(3), 961 (2014)
  27. Bao C, Zhou L, Shao Y, Wu Q, Zhu H, Li K, J. Ind. Eng. Chem., 38, 132 (2016)