화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.53, 411-415, September, 2017
Synthesis and characterization of a new energy material: Pyridinium dinitramide (Py-DN)
E-mail:
A solid oxidizer pyridinium dinitramide (Py-DN) has been newly synthesized as a low toxic chlorine-free energetic oxidizer. The reaction yield increased by 10% higher than the other dinitramide such as ADN because Py-DN was directly converted without sequential precipitation of intermediates. A thermal analyzer, a UV.visible spectrometer and a Fourier transform-infra-red spectrometer were used to characterize the physical and chemical properties of the synthesized Py-DN, and the results were compared with previously prepared salts of ammonium dinitramide (ADN, NH4N(NO2)2) and guanidine dinitramide [GDN, NH2C(NH2)NH2N(NO2)2]. The characteristic endothermic and exothermic decomposition temperatures of Py-DN were 77.4 °C and 144.7 °C, respectively, and the material had a combustion caloric value of 1,739 J/g. These low values indicate that Py-DN is more thermally sensitive than the conventional dinitramides. Furthermore, it enables to decrease the decomposition temperature, which can reduce preheating temperature required for thruster operation.
  1. Singh S, Srivastava P, Singh G, J. Ind. Eng. Chem., 71, 128 (2014)
  2. Zhao WY, Zhang TL, Zhang LN, Yang L, Zhou ZN, J. Ind. Eng. Chem., 38, 73 (2016)
  3. Gohardani AS, Stanojev J, Demairee A, Anflo K, Persson M, Wingborg N, Nilsson C, Prog. Aerosp. Sci., 71, 128 (2014)
  4. Amariei L, Courtheoux S, 41th AIAA Joint Propulsion Conference, Tucson, USA, 2005.
  5. abhay KM, Res. J. Chem. Environ., 14, 94 (2010)
  6. Pathania D, Sharma G, Naushad M, Kumar A, J. Ind. Eng. Chem., 20(5), 3596 (2014)
  7. Martin R, PhD Dissertation, Royal institute of technology Stockholm Sweden, 2010.
  8. Kim WR, Kwon YJ, Jo YM, Jung ST, J. Korea Oil Chem. Soc., 31, 345 (2014)
  9. Yang XK, Xu KZ, Zhao FQ, Yang X, Wang H, Song JR, Chem. Res. Chin. Univ., 25, 76 (2009)
  10. Luk'yanov OA, Gorelik VP, Tartakovsky VA, Russ. Chem. Bull., 44, 108 (1995)
  11. Langlet A, Ostmark H, Wingborg N, U.S. Patent 5,976,483 (1999).
  12. Vorde C, Skifs H, US Patent 7,981,393 B2 (2011).
  13. Kim WR, Kwon YJ, Jo YM, J. Energ. Mater., 35, 44 (2017)
  14. Kim W, Kwon Y, Jo Y, Appl. Chem. Eng., 27(4), 397 (2016)
  15. Rahoui N, Jiang B, Pan HT, Huang YD, Appl. Spectrosc., 51, 431 (2016)
  16. Oliveria J, Nagamachi M, Diniz M, Mattos E, Dutra R, J. Aerosp. Technol. Manag., 3, 269 (2011)
  17. Katcka M, Urbanski T, Bulletin de l'Acade’mie polonaise des sciences, Se’r. Sci. Chim. 12 (1964) 615.
  18. Jo TS, PhD Dissertation, University of Nevada, Las Vegas, USA, 2012.
  19. Lobbeche S, Keicher T, Krause H, Pfeil A, Solid State Ion., 101, 945 (1997)
  20. Yana R, Thakre P, Yang V, Combust. Explos., 41, 657 (2005)
  21. Kim CK, Yoo JG, Min BS, J. Korean Soc. Propuls. Eng., 15, 29 (2011)
  22. Kim JN, Kim MJ, Min BS, J. Korean Soc. Propuls. Eng., 19, 69 (2015)
  23. Kim W, Kwon Y, Jo Y, Park Y, Appl. Chem. Eng., 26(6), 737 (2015)