화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.29, No.3, 163-184, August, 2017
Natural convection in Bingham plastic fluids from an isothermal spheroid: Effects of fluid yield stress, viscous dissipation and temperature-dependent viscosity
E-mail:
In this work, the buoyancy-induced convection from an isothermal spheroid is studied in a Bingham plastic fluid. Extensive results on the morphology of approximate yield surfaces, temperature profiles, and the local and average Nusselt numbers are reported to elucidate the effects of the pertinent dimensionless parameters: Rayleigh number, 10 2 ≤ Ra ≤ 10 6; Prandtl number, 20 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 10 3, and aspect ratio, 0.2 ≤ e ≤ 5. Due to the fluid yield stress, fluid-like (yielded) and solid-like (unyielded) regions coexist in the flow domain depending upon the prevailing stress levels vis-a-vis the value of the fluid yield stress. The yielded parts progressively grow in size with the rising Rayleigh number while this tendency is countered by the increasing Bingham and Prandtl numbers. Due to these two competing effects, a limiting value of the Bingham number (Bnmax) is observed beyond which heat transfer occurs solely by conduction due to the solid-like behaviour of the fluid everywhere in the domain. Such limiting values bear a positive dependence on the Rayleigh number (Ra) and aspect ratio (e). In addition to this, oblate shapes (e < 1) foster heat transfer with respect to spheres (e = 1) while prolate shapes (e > 1) impede it. Finally, simple predictive expressions for the maximum Bingham number and the average Nusselt number are developed which can be used to predict a priori the overall heat transfer coefficient in a new application. Also, a criterion is developed in terms of the composite parameter BnㆍGr -1/2 which predicts the onset of convection in such fluids. Similarly, another criterion is developed which delineates the conditions for the onset of settling due to buoyancy effects. The paper is concluded by presenting limited results to delineate the effects of viscous dissipation and the temperature-dependent viscosity on the Nusselt number. Both these effects are seen to be rather small in Bingham plastic fluids.
  1. Agarwal R, Dhiman A, Numer. Heat Transf. A-Appl., 68, 174 (2015)
  2. Balmforth NJ, Frigaard IA, Ovarlez G, Annu. Rev. Fluid Mech., 46, 121 (2014)
  3. Baranwal AK, Chhabra RP, Heat Transf. Eng., 38(6), 557 (2017)
  4. Bercovier M, Engelman M, J. Comput. Phys., 36, 313 (1980)
  5. Berk Z, 2009, Food Process Engineering and Technology, Academic Press, London.
  6. Bhowmick S, Molla MM, Yao LS, Numer. Heat Transf. A-Appl., 66, 509 (2014)
  7. Bird RB, Armstrong RC, Hassager O, 1987, Dynamics of Polymeric Liquids, Vol. 1: Fluid Dynamics, 2nd ed., Wiley, New York.
  8. Chhabra RP, 2006, Bubbles, Drops, and Particles in Non-Newtonian Fluids, 2nd ed., CRC Press, Boca Raton.
  9. Chhabra RP, Richardson JF, 2008, Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd ed., Butterworth- Heinemann, Oxford.
  10. Christiansen EB, Jensen GE, Tao FS, AIChE J., 12, 1196 (1966)
  11. Dhole SD, Chhabra RO, Eswaran V, AIChE J., 52, 3659 (2006)
  12. Dimakopoulos Y, Pavlidis M, Tsamopoulos J, J. Non-Newton. Fluid Mech., 200, 34 (2013)
  13. Eslami M, Jafarpur K, Heat Mass Transf., 48, 301 (2012)
  14. Frigaard IA, Nouar C, J. Non-Newton. Fluid Mech., 127(1), 1 (2005)
  15. Glowinski R, Wachs A, 2011, On the numerical simulation of viscoplastic fluid flow, In: Glowinski, R. and J. Xu, eds., Handbook of Numerical Analysis, Vol: Numerical Methods for Non-Newtonian Fluids, North-Holland, Amsterdam, 483-717.
  16. Glowinski R, 2003, Finite element methods for incompressible viscous flow, In: Ciarlet, P.G. and J.L. Lions, eds., Handbook of Numerical Analysis, Vol. 9: Numerical Methods for Fluids (Part 3), North Holland, Amsterdam, 3-1176.
  17. Gupta AK, Sasmal C, Sairamu M, Chhabra RP, Int. J. Heat Mass Transf., 75, 592 (2014)
  18. Gupta AK, Chhabra RP, Ind. Eng. Chem. Res., 53(49), 18943 (2014)
  19. Gupta AK, Chhabra RP, Korea-Aust. Rheol. J., 28(2), 87 (2016)
  20. Gupta AK, Chhabra RP, Numer. Heat Transf. A-Appl., 69, 898 (2016)
  21. Gupta SK, Ray S, Chatterjee D, Numer. Heat Transf. A-Appl., 67, 952 (2015)
  22. Hanks RW, Christiansen EB, AIChE J., 7, 519 (1961)
  23. Huilgol RR, Kefayati GHR, J. Non-Newton. Fluid Mech., 220, 22 (2015)
  24. Jafarpur K, Yovanovich MM, Int. J. Heat Mass Transf., 35, 2195 (1992)
  25. Karimfazli I, Frigaard IA, Wachs A, J. Fluid Mech., 787, 474 (2016)
  26. Kishore N, Gu S, Int. J. Heat Mass Transf., 54(11-12), 2595 (2011)
  27. Kishore N, Gu S, Chem. Eng. Technol., 34(9), 1551 (2011)
  28. Kwant PB, Zwaneveld A, Dijkstra FC, Chem. Eng. Sci., 28, 1303 (1973)
  29. Lee S, Yovanovich MM, Jafarpur K, J. Thermophys. Heat Transf., 5, 208 (1991)
  30. Li C, Magnin A, Metivier C, AIChE J., 62(4), 1347 (2016)
  31. Liu BT, Muller SJ, Denn MM, J. Non-Newton. Fluid Mech., 102(2), 179 (2002)
  32. Macosko CW, 1994, Rheology: Principles, Measurements, and Applications, Wiley, New York.
  33. Martynenko OG, Khramtsov PP, 2005, Free-Convection Heat Transfer, Springer, Heidelberg.
  34. Mitsoulis E, Rheology Reviews 2007, The British Society of Rheology, London, 135-178 (2007).
  35. Mitsoulis E, Tsamopoulos J, Rheol. Acta, 56(3), 231 (2017)
  36. Nalluri SV, Patel SA, Chhabra RP, Int. J. Heat Mass Transf., 84, 304 (2015)
  37. Nirmalkar N, Bose A, Chhabra RP, Numer. Heat Transf. A-Appl., 66, 1048 (2014)
  38. Nirmalkar N, Bose A, Chhabra RP, Int. J. Therm. Sci., 83, 33 (2014)
  39. Nirmalkar N, Gupta AK, Chhabra RP, Ind. Eng. Chem. Res., 53(45), 17818 (2014)
  40. Nirmalkar N, Chhabra RP, Chem. Eng. Sci., 89, 49 (2013)
  41. Nirmalkar N, Chhabra RP, Poole RJ, Ind. Eng. Chem. Res., 52(20), 6848 (2013)
  42. Nirmalkar N, Chhabra RP, Poole RJ, Ind. Eng. Chem. Res., 52, 13490 (2013)
  43. O’Donovan EJ, Tanner RI, J. Non-Newton. Fluid Mech., 15, 75 (1984)
  44. Papanastasiou TC, J. Rheol., 31, 385 (1987)
  45. Patel OP, Patel SA, Raja AH, Chhabra RP, J. Energ. Heat Mass Transf., 37, 27 (2015)
  46. Patel SA, Chhabra RP, J. Thermophys. Heat Transf., 30, 152 (2016)
  47. Prhashanna A, Chhabra RP, Chem. Eng. Sci., 65(23), 6190 (2010)
  48. Prhashanna A, Chhabra RP, Ind. Eng. Chem. Res., 50(4), 2424 (2011)
  49. Reddy CR, Kishore N, Ind. Eng. Chem. Res., 53(2), 989 (2014)
  50. Saramito P, Wachs A, Rheol. Acta, 56(3), 211 (2017)
  51. Sasmal C, Chhabra RP, J. Non-Newton. Fluid Mech., 166(14-15), 811 (2011)
  52. Song DY, Gupta RK, Chhabra RP, Ind. Eng. Chem. Res., 49(8), 3849 (2010)
  53. Song DY, Gupta RK, Chhabra RP, Int. J. Heat Mass Transf., 55(7-8), 2110 (2012)
  54. Sreenivasulu B, Srinivas B, Ramesh KV, Int. J. Heat Mass Transf., 70, 71 (2014)
  55. Krishnan S, Kannan A, Ind. Eng. Chem. Res., 51(45), 14867 (2012)
  56. Tsamopoulos J, Dimakopoulos Y, Chatzidai N, Karapetsas G, Pavlidis M, J. Fluid Mech., 601, 123 (2008)
  57. Turan O, Sachdeva A, Poole RJ, Chakraborty N, Numer. Heat Transf. A-Appl., 60, 381 (2011)
  58. Turan O, Chakraborty N, Poole RJ, J. Non-Newton. Fluid Mech., 165(15-16), 901 (2010)
  59. Vasco DA, Moraga NO, Haase G, Numer. Heat Transf. A-Appl., 66, 990 (2014)
  60. ASME Winter Annual Meeting, Yovanovich MM, ASME Winter Annual Meeting, Boston, Massachusetts, 121-129 (1987)., 121
  61. Yovanovich MM, AIAA 22nd Thermophysics Conference, Honolulu, Hawaii, AIAA-87-1587 (1987).