화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.8, 864-870, August, 2017
Preparation and Investigation of Solid Polymer Electrolyte Based on Novel Polyamide Elastomer/Metal Salt
E-mail:
Antistatic-polyamide elastomers composed of poly(urethane-urea-amide) (PUUA) and NaSCN was successfully synthesized through in-situ reactive processing in double-screw extruder. The obtained antistatic-polyamide elastomers can be employed as solid polymer electrolyte to improve the surface conductivity of polymers. The effect of PUUA composition, NaSCN content, temperature and relative humidity on the surface resistivity of antistatic-polyamide elastomer was extensively studied by surface resistivity. The results showed that the surface resistivity of antistatic-polyamide elastomer was slightly influenced by temperature and relative humidity, and can satisfy the application of antistatic materials requirement. Moreover, thermalgravity analysis (TGA), tensile test and scanning electron microscopy (SEM) were used to evaluate the thermal stability, mechanical properties and morphology of fracture face of antistatic-polyamide elastomers. TGA results demonstrated that antistatic-polyamide elastomers have a good thermal stability with the onset decomposition temperature exceed 280?. Tensile tests revealed that the prepared antistatic-polyamide elastomers possess good mechanical properties. SEM showed that the antistatic ability of antistatic-polyamide elastomer is relative to the ion-conductive channels or network formed by the PUUA and NaSCN particles.
  1. Novak I, Krupa I, Chodak I, Eur. Polym. J., 39, 585 (2003)
  2. Krupa I, Mikova G, Novak I, Janigova I, Nogellova Z, Lednicky F, Prokes J, Eur. Polym. J., 43, 2401 (2007)
  3. Hochberg A, Versieck J, Plastics Additives and Compounding, 3, 24 (2001).
  4. Park ES, Cho EB, Kim D, Macromol. Res., 15(7), 617 (2007)
  5. Thongruang W, Spontak RJ, Balik CM, Polymer, 43(8), 2279 (2002)
  6. Martins CR, De Paoli M, Eur. Polym. J., 41, 2867 (2005)
  7. Pluta M, Alexandre M, Blacher S, Dubois P, Jerome R, Polymer, 42(22), 9293 (2001)
  8. Yoon SW, Lee S, Choi IS, Do Y, Park S, Macromol. Res., 23(8), 713 (2015)
  9. Kwon JY, Kim EY, Kim HD, Macromol. Res., 12(3), 303 (2004)
  10. Castillo-Ortega MM, Del Castillo-Castro T, Encinas JC, Perez-Tello M, De Paoli MA, Olayo G, J. Appl. Polym. Sci., 89(1), 179 (2003)
  11. Pan YX, Yu ZZ, Ou YC, Hu GH, J. Polym. Sci. B: Polym. Phys., 38(12), 1626 (2000)
  12. Chodak I, Omastova M, Pionteck J, J. Appl. Polym. Sci., 82(8), 1903 (2001)
  13. Ma Y, Li LB, Gao GX, Yang XY, You Y, Electrochim. Acta, 187, 535 (2016)
  14. Zhang JF, Ma C, Liu JT, Chen LB, Pan AQ, Wei WF, J. Membr. Sci., 509, 138 (2016)
  15. Zhao YR, Wu C, Peng G, Chen XT, Yao XY, Bai Y, Wu F, Chen SJ, Xu XX, J. Power Sources, 301, 47 (2016)
  16. Wang J, Yang W, Lei J, J. Electrostat., 66, 627 (2008)
  17. Kong W, Wu B, Liu Y, Guo D, Lei J, Soft Mater., 14, 46 (2016)
  18. Kong W, Hu K, Fu X, Guo D, Lei J, Polym. -Plast. Technol. Eng., 55, 1 (2016)
  19. Wang J, Bao L, Zhao H, Lei J, Compos. Sci. Technol., 72, 976 (2012)
  20. Wang GJ, Xue B, J. Appl. Polym. Sci., 118(4), 2448 (2010)
  21. Kong W, Yang Y, Liu Z, Jiang L, Zhou C, Lei J, Polym. Int., 66, 436 (2017)
  22. Wang T, Hsieh T, Polym. Degrad. Stabil., 55, 95 (1997)