Journal of Industrial and Engineering Chemistry, Vol.54, 218-225, October, 2017
Electrochemical preparation of Ag/Cu and Au/Cu foams for electrochemical conversion of CO2 to CO
E-mail:,
Ag/Cu and Au/Cu foams were prepared by bubble-templated Cu electrodeposition and subsequent noble metal galvanic displacement for production of CO via the electrochemical conversion of CO2. As the displacement time was increased, the amounts of Ag and Au gradually increased, with accompanying changes in the pore size and wall thickness. Due to their morphological advantage, at low overpotential ranges the Ag/Cu and Au/Cu foams showed higher CO partial current densities than those of Ag and Au films, respectively. Based on the loading mass of noble metal, the Ag/Cu and Au/Cu foams exhibited costeffectiveness for CO production. The minimized use of Ag and Au with enlarged surface area supported by
porous Cu foams provided effective way to fabricate catalysts for electrochemical CO2 conversion to CO.
Keywords:Electrochemical carbon dioxide conversion;Carbon monoxide production;Bubble-templated electrodeposition;Displacement;Foam catalyst
- Sawyer J, Nature, 239, 23 (1972)
- Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Science, 318, 1737 (2007)
- Lewis NS, Nocera DG, Proc. Natl. Acad. Sci., 103, 15729 (2006)
- Lee SY, Park SJ, J. Ind. Eng. Chem., 23, 1 (2015)
- Lee YC, Lee SM, Hong WG, Huh YS, Park SY, Lee SC, Lee J, Lee JB, Lee HU, Kim HJ, J. Ind. Eng. Chem., 23, 16 (2015)
- Zeman F, Environ. Sci. Technol., 48, 11730 (2014)
- Smestad GP, Steinfeld A, Ind. Eng. Chem. Res., 51(37), 11828 (2012)
- Kim SS, Lee SM, Hong SC, J. Ind. Eng. Chem., 18(2), 860 (2012)
- Takeda H, Ishitani O, Coord. Chem. Rev., 254, 346 (2010)
- Windle CD, Perutz RN, Coord. Chem. Rev., 256, 2562 (2012)
- Benson EE, Kubiak CP, Sathrum AJ, Smieja JM, Chem. Soc. Rev., 38, 89 (2009)
- Whipple DT, Kenis PJ, J. Phys. Chem. Lett., 1, 3451 (2010)
- Kauffman DR, Thakkar J, Siva R, Matranga C, Ohodnicki PR, Zeng C, Jin R, ACS Appl. Mater. Interfaces, 7, 15626 (2015)
- Qiao J, Liu Y, Hong F, Zhang J, Chem. Soc. Rev., 43, 631 (2014)
- Sridhar N, Hill D, Agarwal A, Zhai Y, Hektor E, Carbon Dioxide Utilization. Electrochemical Conversion of CO2.Opportunities and Challenges, Det Norske Veritas, 2011.
- Hori Y, CO2-reduction, catalyzed by metal electrodes, Handbook of Fuel Cells, (2003) , pp. 720.
- Back S, Yeom MS, Jung Y, ACS Catal., 5, 5089 (2015)
- Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F, Nat. Commun., 5, 3242 (2014)
- Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DF, Jiao F, ACS Catal., 5, 4293 (2015)
- Hatsukade T, Kuhl KP, Cave ER, Abram DN, Jaramillo TF, Phys. Chem. Chem. Phys., 16, 13814 (2014)
- Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ, J. Am. Chem. Soc., 137(43), 13844 (2015)
- Ma M, Trzesniewski BJ, Xie J, Smith WA, Angew. Chem.-Int. Edit., 55, 9748 (2016)
- Zhu WL, Michalsky R, Metin O, Lv HF, Guo SJ, Wright CJ, Sun XL, Peterson AA, Sun SH, J. Am. Chem. Soc., 135(45), 16833 (2013)
- Safaei TS, Mepham A, Zheng X, Pang Y, Dinh CT, Liu M, Sinton D, Kelley SO, Sargent EH, Nano Lett., 16, 7224 (2016)
- Zhu WL, Zhang YJ, Zhang HY, Lv HF, Li Q, Michalsky R, Peterson AA, Sun SH, J. Am. Chem. Soc., 136(46), 16132 (2014)
- Nursanto EB, Jeon HS, Kim C, Jee MS, Koh JH, Hwang YJ, Min BK, Catal. Today, 260, 107 (2016)
- Chen YH, Li CW, Kanan MW, J. Am. Chem. Soc., 134(49), 19969 (2012)
- Watanabe M, Shibata M, Kato A, Azuma M, Sakata T, J. Electrochem. Soc., 138, 3382 (1991)
- Choi J, Kim MJ, Ahn SH, Choi I, Jang JH, Ham YS, Kim JJ, Kim SK, Chem. Eng. J., 299, 37 (2016)
- Ishimaru S, Shiratsuchi R, Nogami G, J. Electrochem. Soc., 147(5), 1864 (2000)
- Kim D, Resasco J, Yu Y, Asiri AM, Yang P, Nat. Commun., 5, 4948 (2014)
- Friebel D, Mbuga F, Rajasekaran S, Miller DJ, Ogasawara H, Alonso-Mori R, Sokaras D, Nordlund D, Weng TC, Nilsson A, J. Phys. Chem., 118, 7954 (2014)
- Christophe J, Doneux T, Buess-Herman C, Electrocatalysis, 3, 139 (2012)
- Zhang WB, Ding C, Wang AJ, Zeng YW, J. Electrochem. Soc., 162(8), D365 (2015)
- Li Y, Jia WZ, Song YY, Xia XH, Chem. Mater., 19, 5758 (2007)
- Nam D, Kim R, Han D, Kim J, Kwon H, Electrochim. Acta, 56(25), 9397 (2011)
- Huang X, Tu J, Xia X, Wang X, Xiang J, Electrochem. Commun., 10, 1288 (2008)
- Shin HC, Dong J, Liu ML, Adv. Mater., 15(19), 1610 (2003)
- Kim YS, Kim SK, Kim JJ, Electrochem. Solid State Lett., 8, 5210 (2002)
- Li Y, Song YY, Yang C, Xia XH, Electrochem. Commun., 9, 981 (2007)
- Yuan JP, Lai YC, Duan JL, Zhao QQ, Zhan JH, J. Colloid Interface Sci., 365(1), 122 (2012)
- Liu R, Sen A, Chem. Mater., 24, 48 (2011)
- Hamilton J, Farmer J, Anderson R, J. Electrochem. Soc., 133, 739 (1986)
- Wang G, Xiao L, Huang B, Ren Z, Tang X, Zhuang L, Lu J, J. Mater. Chem., 22, 15769 (2012)
- Muniz-Miranda M, Caporali S, J. Opt. A-Pure Appl. Opt., 17, 114005 (2015)
- Chavez KL, Hess DW, J. Electrochem. Soc., 148(11), G640 (2001)
- Sen S, Liu D, Palmore GTR, ACS Catal., 4, 3091 (2014)
- Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK, Energy Environ. Sci., 3, 1311 (2010)