화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.54, 290-297, October, 2017
Evaluation of ion implantation for anti-thrombogenic coronary stent in vitro and in vivo
E-mail:
The aim of this study was to evaluate the effect of ion implantation on the surface of anti thrombogenic coronary stent. Nitrogen (N) was implanted into the cobalt-chromium surface by using an ion source under a plasma environment to enhance its hardness and surface modification. The N ion dosage was1 x 10 15 ions/cm2. All analysis results of the ion implanted stent were compared with those of bare metal stent. The N component and distribution were confirmed by auger electron spectroscopy. Microhardness was significantly increased after 40 min of implantation (415.3 ± 12.38 HV, 18.9 ± 2.62%). The surface was altered to hydrophobic status through ion implantation (30.6 ± 1.12% in contact angle increment). Platelet adhesion, and smooth muscle cell migration and proliferation were prevented in the ion implanted group (43.9%, 11.2%, and 45.1%, respectively). To verify the in vitro result, stents were implanted to rabbit iliac artery and isolated at 4 weeks post implantation. Then, the stents were subjected to histological analysis. No significant differences in injury score, internal elastic lamina, lumen area, and restenosis rate were found. However, the fibrin score was more significantly decreased in the ion beam-implanted group (2.5 ± 0.15) than in the bare metal stent group (1.8 ± 0.31, n = 10, p < 0.05). Taken together, ion beam implantation may be an efficient accessorial tool for preventing in-stent restenosis and instent thrombosis.
  1. Tan A, Farhatnia Y, de Mel A, Rajadas J, Alavijeh MS, Seifalian AM, J. Biotechnol., 164, 151 (2013)
  2. von Birgelen C, van der Heijden LC, Basalus MW, Kok MM, Sen H, Louwerenburg HW, van Houwelingen KG, Stoel MG, de Man FH, Linssen GC, Tandjung K, Doggen CJ, van der Palen J, Lowik MM, JAMA Cardiol., 2, 268 (2017)
  3. Yu M, Xu B, Kandzari DE, Wu Y, Yan H, Chen J, Qian J, Qiao S, Yang Y, Gao RL, Catheter. Cardiovasc. Interv., 83, 405 (2014)
  4. Win HK, Caldera AE, Maresh K, Lopez J, Rihal CS, Parikh MA, Granada JF, Marulkar S, Nassif D, Cohen DJ, Kleiman NS, JAMA, 297, 2001 (2007)
  5. Daemen J, Wenaweser P, Tsuchida K, Abrecht L, Vaina S, Morger C, Kukreja N, Juni P, Sianos G, Hellige G, van Domburg RT, Hess OM, Boersma E, Meier B, Windecker S, Serruys PW, Lancet, 369, 667 (2007)
  6. Swanson N, Hogrefe K, Javed Q, Malik N, Gershlick AH, J. Invasive Cardiol., 15, 688 (2003)
  7. Inoue T, Croce K, Morooka T, Sakuma M, Node K, Simon DI, JACC Cardiovasc. Interv., 4, 1057 (2011)
  8. Li M, Cheng Y, Zheng YF, Zhang X, Xi TF, Wei SC, Appl. Surf. Sci., 258(7), 3074 (2012)
  9. Scott NA, Candal FJ, Robinson KA, Ades EW, Am. Heart J., 129, 860 (1995)
  10. Mani G, Feldman MD, Patel D, Agrawal CM, Biomaterials, 28, 1689 (2007)
  11. O’Brien B, Carroll W, Acta Biomater., 5, 945 (2009)
  12. Sioshansi P, Nucl. Instrum. Methods, B232, 353 (1987)
  13. Kurotobi K, Kaibara M, Suzuki Y, Iwaki M, Nakajima H, Nucl. Instrum. Methods, B175, 791 (2001)
  14. Suzuki Y, Kusakabe M, Lee JS, Kaibara M, Iwaki M, Sasabe H, Nucl. Instrum. Methods, B65, 142 (1992)
  15. Chaturvedi S, Yadav JS, Stroke, 37, 1572 (2006)
  16. Chaturvedi S, Sohrab S, Tselis A, Stroke, 32, 2700 (2001)
  17. Kurotobi K, Kaibara M, Suzuki Y, Iwaki M, Nakajima H, Kaneko S, Colloids Surf. B: Biointerfaces, 19, 227 (2000)
  18. Lutz J, Diaz C, Garcia JA, Blawert C, Mandl S, Surf. Coat. Technol., 205, 3043 (2011)
  19. Yang P, Huang N, Leng YX, Yao ZQ, Zhou HF, Maitz M, Leng Y, Chu PK, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 242, 22 (2006)
  20. Yokota T, Terai T, Kobayashi T, Iwaki M, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 242, 48 (2005)
  21. Faizrakhmanov IA, Bazarov VV, Zhikharev VA, Khaibullin IB, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 148, 669 (1999)
  22. Tulloch AW, Chun Y, Levi DS, Mohanchandra KP, Carman GP, Lawrence PF, Rigberg DA, J. Surg. Res., 171, 317 (2011)
  23. Bilek MM, Bax DV, Kondyurin A, Yin Y, Nosworthy NJ, Fisher K, Waterhouse A, Weiss AS, dos Remedios CG, McKenzie DR, Proc. Natl. Acad. Sci. U. S. A., 108, 14405 (2011)
  24. Lee SY, Bae IH, Park DS, Jang EJ, Shim JW, Lim KS, Park JK, Sim DS, Jeong MH, J. Biomed. Mater. Res., 105, 301 (2017)
  25. Bae IH, Lim KS, Park JK, Park DS, Lee SY, Jang EJ, Ji MS, Sim DS, Hong YJ, Ahn Y, Park JC, Cho JG, Kang JC, Kim IS, Nah JW, Jeong MH, J. Ind. Eng. Chem., 21, 1295 (2015)
  26. Chen JL, Li QL, Chen JY, Chen C, Huang N, Appl. Surf. Sci., 255(15), 6894 (2009)
  27. Liang CC, Park AY, Guan JL, Nat. Protoc., 2, 329 (2007)
  28. Schwartz RS, Edelman E, Virmani R, Carter A, Granada JF, Kaluza GL, Chronos NA, Robinson KA, Waksman R, Weinberger J, Wilson GJ, Wilensky RL, Circ. Cardiovasc. Interv., 1, 143 (2008)
  29. Seidel CL, Arterioscler. Thromb. Vasc. Biol., 17, 1868 (1997)
  30. Lacoste A, Pelletier J, Nucl. Instrum. Methods, B208, 267 (2003)
  31. Mizuno K, Gan BK, Kondyurin A, Bilek MMM, McKenzie DR, Plasmas Polym., 5, 834 (2008)
  32. Fernandes BB, Mandl S, Oliveira RM, Ueda M, Appl. Surf. Sci., 310, 278 (2014)
  33. Suzuki Y, Iwaki M, Takahashi N, Yotoriyama T, Kurotobi K, Ujiie H, Hori T, Nucl. Instrum. Methods, B232, 353 (2005)
  34. Anselme K, Biomaterials, 21, 667 (2000)
  35. Xu C, Yang F, Wang S, Ramakrishna S, J. Biomed. Mater. Res., 71, 154 (2004)
  36. Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, Wang S, Biomaterials, 26, 4453 (2005)
  37. Huang HH, Ho CT, Lee TH, Lee TL, Liao KK, Chen FL, Biomol. Eng., 21, 93 (2004)