화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.54, 440-446, October, 2017
Role of CODPCP/CODTotal ratio on p-chlorophenol toxicity towards aerobic granular sludge
E-mail:
Aerobic granular sludge (AGS) has emerged as a promising biotechnology for the treatment of industrial wastewaters. The biodegradation of AGS utilizing p-chlorophenol (PCP) was investigated under various CODPCP/CODTotal ratios. The initially developed microbial granules were used for degradation of PCP, with monoethylene glycol (MEG) as co-substrate. Heterotrophic bacteria in AGS appeared to adapt fairly rapidly to PCP, and a near complete recovery of their metabolic activity was noticed after about 4 d of exposure to high PCP levels (up to 400 mg/L). Nevertheless, CODPCP/CODTotal ≥ 0.648 did negatively affect granular sludge in terms of both morphology and biological activity.
  1. Singleton I, J. Chem. Technol. Biotechnol., 59(1), 9 (1994)
  2. Amorim CL, Moreira IS, Duque AF, van Loosdrecht MC, Castro PM, Aerobic Granular Sludge: Treatment of Wastewaters Containing Toxic Compounds, IGI Global, 2017, pp. 231.
  3. Adav SS, Lee DJ, Show KY, Tay JH, Biotechnol. Adv., 26, 411 (2008)
  4. Zhang Q, Hu J, Lee DJ, Bioresour. Technol., 210, 74 (2016)
  5. Ellis TG, Smets BF, Magbanua BS, Grady CL, Water Sci. Technol., 34, 35 (1996)
  6. Nalbur BE, Alkan U, Int. Biodeterior. Biodegrad., 60, 178 (2007)
  7. Ferrer-Polonio E, Mendoza-Roca JA, Iborra-Clar A, Alonso-Molina JL, Pastor-Alcaniz L, J. Ind. Eng. Chem., 43, 44 (2016)
  8. Sahinkaya E, Dilek FB, Biodegradation, 18, 427 (2007)
  9. Adav SS, Chen MY, Lee DJ, Ren NQ, Biotechnol. Bioeng., 96(5), 844 (2007)
  10. Suja E, Nancharaiah YV, Venugopalan VP, Appl. Biochem. Biotechnol., 167(6), 1569 (2012)
  11. Carucci A, Milia S, De Gioannis G, Piredda M, J. Hazard. Mater., 166(1), 483 (2009)
  12. Moussavi G, Ghodrati S, Mohseni-Bandpei A, J. Biotechnol., 184, 111 (2014)
  13. Zhao X, Chen ZL, Wang XC, Li JCZ, Shen JM, Xu H, Bioresour. Technol., 179, 104 (2015)
  14. Ye FX, Shen DS, Chemosphere, 54, 1573 (2004)
  15. Katritzky AR, Kasemets K, Slavov S, Radzvilovits M, Tamm K, Karelson M, Water Res., 44, 2451 (2010)
  16. Hassani AH, Borghei SH, Samadyar H, Ghanbari B, Environ. Technol., 35, 499 (2014)
  17. APHA, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association, Washington, DC, 2012.
  18. Ahmed H, Principles and Reactions of Protein Extraction, Purification, and Characterization, CRC Press, 2004.
  19. Liu YQ, Moy B, Kong YH, Tay JH, Enzyme Microb. Technol., 46(6), 520 (2010)
  20. Gobi K, Mashitah MD, Vadivelu VM, Chem. Eng. J., 174(1), 213 (2011)
  21. Zhou JH, Zhang ZM, Zhao H, Yu HT, Alvarez PJJ, Xu XY, Zhu L, Bioresour. Technol., 216, 562 (2016)
  22. Liu Q, Tay J, Liu Y, Environ. Technol., 24, 1235 (2003)
  23. Tay J, Liu Q, Liu Y, Environ. Technol., 23, 931 (2009)
  24. Moy BP, Tay JH, Toh SK, Liu Y, Tay SL, Lett. Appl. Microbiol., 34, 407 (2002)
  25. Tay JH, Pan S, He Y, Tay STL, J. Environ. Eng.-ASCE, 130, 1102 (2004)
  26. Awang NA, Shaaban MG, Int. Biodeterior. Biodegrad., 112, 1 (2016)
  27. Bali U, Sengul F, Process Biochem., 37(11), 1317 (2002)
  28. Westmeier F, Rehm H, Appl. Microbiol. Biotechnol., 26, 78 (1987)
  29. Sala-trepat JM, Evans WC, Eur. J. Biochem., 20, 400 (1971)
  30. McLaughlin H, Farrell A, Quilty B, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 41, 763 (2006)
  31. Wieser M, Eberspacher J, Vogler B, Lingens F, Fems Microbiol. Lett, 116, 73 (1994)
  32. Radianingtyas H, Robinson GK, Bull AT, Microbiology, 149, 3279 (2003)
  33. Saez PB, Rittmann BE, Biodegradation, 4, 3 (1993)
  34. Farrell A, Quilty B, Biodegradation, 10, 353 (1999)
  35. Winkler MKH, Kleerebezem R, de Bruin LMM, Verheijen PJT, Abbas B, Habermacher J, van Loosdrecht MCM, Appl. Microbiol. Biotechnol., 97(16), 7447 (2013)
  36. Rafiee M, Mesdaghinia A, Ghahremani MH, Nasseri S, Nabizadeh R, Desalin. Water Treat., 49, 307 (2012)
  37. Bartels I, Knackmuss HJ, Reineke W, Appl. Environ. Microbiol., 47, 500 (1984)
  38. Kim JH, Oh KK, Lee ST, Kim SW, Hong SI, Process Biochem., 37(12), 1367 (2002)
  39. Ni BJ, Yu HQ, AAPG Bull., 28, 895 (2010)
  40. Tay JH, Ivanov V, Pan S, Tay SL, Lett. Appl. Microbiol., 34, 254 (2002)
  41. Jiang HL, Tay JH, Tay SL, Lett. Appl. Microbiol., 35, 439 (2002)
  42. Buitron G, Gonzalez A, Water Sci. Technol., 34, 289 (1996)
  43. Monsalvo VM, Mohedano AF, Casas JA, Rodriguez JJ, Bioresour. Technol., 100(20), 4572 (2009)
  44. Eker S, Kargi F, Bioresour. Technol., 101(23), 9020 (2010)
  45. Sahinkaya E, Dilek FB, Environ. Res., 99, 243 (2005)
  46. Sahoo N, Pakshirajan K, Ghosh P, Ghosh A, Biodegradation, 22, 275 (2011)
  47. Tay STL, Moy BYP, Maszenan AM, Tay JH, Appl. Microbiol. Biotechnol., 67(5), 708 (2005)
  48. Cammarota MC, Sant'Anna GL, Biotechnol. Lett., 20(1), 1 (1998)
  49. Deng S, Wang L, Su H, J. Environ. Manage., 173, 49 (2016)
  50. McSwain B, Irvine R, Hausner M, Wilderer P, Appl. Environ. Microbiol., 71, 1051 (2005)
  51. Adav SS, Lee DJ, Tay JH, Water Res., 42, 1644 (2008)
  52. Fang HH, Xu LC, Chan KY, Water Res., 36, 4709 (2002)
  53. Benndorf D, Loffhagen N, Babel W, Fems Microbiol. Lett, 200, 247 (2001)
  54. Wang XH, Gai LH, Sun XF, Xie HJ, Gao MM, Wang SG, Appl. Microbiol. Biotechnol., 86(6), 1967 (2010)
  55. Wang Z, Liu L, Yao J, Cai W, Chemosphere, 63, 1728 (2006)