Polymer(Korea), Vol.41, No.5, 850-859, September, 2017
처리 용량 증대를 위한 새로운 형태의 막 축전식 탈염 셀의 설계 및 이의 성능 연구
Design of Newly Shaped Membrane Capacitive Deionization (MCDI) Cell to Enhance the Treatment Capacity and Its Performance Study
E-mail:
초록
본 연구에서는 합성된 이온교환고분자를 이용하여 상업화된 탄소전극 위에 코팅하여 복합탄소전극을 제조하였다. 원액에 대한 전극의 유효접촉면적을 늘려 탈염효율을 증대시키기 위해 가로로 긴 육각형 형태를 갖는 셀을설계하고, 이를 토대로 전산유체역학을 통한 유동해석을 실시하여 사각지대의 유무를 관찰하였다. 제조한 복합탄소전극을 사용한 막 결합형 축전식 탈염공정을 이용한 결과, 대표적으로 100 mg/L NaCl 수용액을 공급액으로 사용하였을 때, 유속 45 mL/min에서 탈염효율 100%의 결과를 얻었으며, 300 mg/L NaCl 수용액을 사용하였을 때, 흡착전압 1.2 V, 흡착시간 7분, 탈착전압 -0.1 V, 탈착시간 3분의 조건에서 탈염효율이 99%로 측정되었다.
In this study, the composite carbon electrodes were prepared using the synthesized ion exchange polymers coated onto the commercialized carbon electrodes. To improve the salt removal efficiencies by the enhancement of the effective contact areas of the electrodes for the feed solutions, the longer horizontal axes out of the hexagon were designed and then the fluid dynamics were carried out to observe the existence of the dead zones through the computational fluid dynamics. When the membrane capacitive deionization process equipped with the manufactured composite carbon electrodes was tested at the feed flow rate, 45 mL/min for the 100 mg/L NaCl, the salt removal efficiency of 100% was typically obtained. And for 300 mg/L NaCl as the feed solution, the removal efficiency 99% was measured at the adsorption voltage 1.2 V for the time 7 min and the desorption voltage -0.1 V for the time 3 min.
Keywords:membrane capacitive deionization (MCDI);salt removal efficiency;sulfonated poly(ether ether ketone);aminated polysulfone;cell design;hexagon cell;computational fluid dynamics
- Yang CM, Choi WH, Desalination, 174, 125 (2005)
- Joo HJ, Hwang IS, Kwak HY, J. Korean Solar Ener. Soc., 31, 1 (2011)
- Trainham JA, Newman J, J. Electrochem. Soc., 124, 1528 (1977)
- Wolf PH, Siverns S, Monti S, Desalination, 182(1-3), 293 (2005)
- Lee KP, Arnot TC, Mattia D, J. Membr. Sci., 370(1-2), 1 (2011)
- Khawaji AD, Kutubkhanah IK, Wie JM, Desalination, 221(1-3), 47 (2008)
- Oren Y, Soffer A, J. Appl. Electrochem., 13, 473 (1983)
- Ryoo MW, Seo G, Water Res., 37, 1527 (2003)
- Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF, J. Electrochem. Soc., 143(1), 159 (1996)
- Oren Y, Desalination, 228(1-3), 10 (2008)
- Welgemoed TJ, Schutte CF, Desalination, 183(1-3), 327 (2005)
- Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM, Prog. Mater. Sci., 58(8), 1388 (2013)
- Anderson MA, Cudero AL, Palma J, Electrochim. Acta, 55(12), 3845 (2010)
- Porada S, Weinstein L, Dash R, Van der Wal A, Bryjak M, Gogotsi Y, Biesheuvel PM, ACS Appl. Mater. Interfaces, 4, 1194 (2012)
- Caudle DD, Tucker JH, Cooper JL, Arnold BB, Papastamataki A, Electrochemical Demineralization of Water with Carbon Electrodes, Research Report, Oklahoma University Research Institute, 1966.
- Oh HJ, Lee JH, Ahn HJ, Jeong Y, Kim YJ, Chi CS, Thin Solid Films, 515(1), 220 (2006)
- Kim YJ, Choi JH, Water Res., 46, 6033 (2012)
- Kim JS, Rhim JW, Membr. Water Treat., 7, 39 (2016)
- Rica RA, Brogioli D, Ziano R, Salerno D, Mantegazza F, J. Phys. Chem., 116, 16934 (2012)
- Lee JB, Park KK, Eum HM, Lee CW, Desalination, 196(1-3), 125 (2006)
- Kim YJ, Choi JH, J. Korean Ind. Eng. Chem., 21, 87 (2009)
- Biesheuvel PM, van der Wal A, J. Membr. Sci., 346(2), 256 (2010)
- Kim JS, Choi JH, J. Membr. Sci., 355(1-2), 85 (2010)
- Strathmann H, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam, 2004.
- Xu TW, J. Membr. Sci., 263(1-2), 1 (2005)
- Lee JH, Choi JH, J. Membr. Sci., 409, 251 (2012)
- Kim JS, Kim CS, Shin HS, Rhim JW, Macromol. Res., 23(4), 360 (2015)
- Karas F, Hnat J, Paidar M, Schauer J, Bouzek K, Int. J. Hydrog. Energy, 39(10), 5054 (2014)
- Kwon SH, Rhim JW, Membr. Water Treat., 7, 115 (2016)