화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.5, 889-895, September, 2017
PPS 유동성 향상을 위한 첨가제 합성 및 분석
Synthesis and Analysis of Flow Modifiers for PPS Flowability Enhancement
E-mail:,
초록
폴리페닐렌설파이드(PPS)는 뛰어난 열적 안정성, 우수한 기계적 물성, 내화학성, 치수 안정성 등의 특성 때문에 전기, 전자, 정밀기기 등의 분야에 쓰이고 있다. 타 엔지니어링 플라스틱에 비해 가볍고 물성이 우수하기 때문에 산업 여러 분야에서 금속 대체 소재로 적용되고 있다. 그러나 유동성이 떨어진다는 단점이 있고, 이것을 향상시키려는 연구가 진행되고 있다. 본 연구에서는 PPS의 유동성 향상을 위해 코어 구조는 PPS와 유사한 diphenyl thioether이고 양 말단에는 ether 결합 또는 amide 결합을 갖는 유동조절제를 합성하였다. 유동성 향상 정도는 microcompounder를 이용하여 PPS와 첨가제를 3분 동안 mixing한 후 spiral 시편을 제작하여 확인하였고, 토크는 v 1.5 microcompounder프로그램을 사용하여 측정하였다. Disc 시편을 제작하여 점도를 측정하였으며, 유동조절제의 구조에 따른 유변특성 관계를 분석하였다.
Polyphenylene sulfide (PPS) is used for electronic devices, precision equipments, and various fields because of its outstanding properties such as thermal stability, mechanical properties, chemical stability and dimensional stability. Also, it is lightweight and has better mechanical properties than other engineering plastics so it can substitute metals in many industries. However, there are a few studies on the improvement of flowability of PPS and it is extremely difficult to understand how the additives affect the fluidity. In this study, several flow modifiers were designed and synthesized. Their core structure was diphenyl thioether, which was flanked by ether or amide bonds. Flowability was confirmed by preparing spiral specimens after mixing PPS and additives for 3 min using a microcompounder. Torque was measured by v 1.5 microcompounder program. Disc specimens were prepared and their viscosity was measured. The relationships between the flowability and the structure of flow modifiers were analyzed.
  1. Margolis JM, Engineering Plastics Handbook, 1st Edition, McGraw-Hill, New York, 2006.
  2. Tanthapanichakoon W, Hata M, Nitta K, Furuuchi M, Otani Y, Polym. Degrad. Stabil., 91, 2614 (2006)
  3. Short JN, Hill WH, Chem. Tech., 2, 481 (1972)
  4. Hill WH, Brady DG, Polym. Eng. Sci., 16, 831 (1976)
  5. Ma CM, O’Connor JE, Lou AY, SAMPE Q., 15, 12 (1984)
  6. Hitch M, U.S. Patent 3,755,221 (1971).
  7. Joseph CA, U.S. Patent 2,948,698 (1957).
  8. Forschirm A, U.S. Patent 5,482,987 (1995).
  9. Reedy OL, Twilley IC, Rainer NB, U.S. Patent 3,516,956 (1966).
  10. Brilliant SD, Bae KJ, U.S. Patent 5,872,166 (1995).
  11. Daniels PH, J. Vinyl Addit. Technol., 15, 219 (2009)
  12. van Oosterhout JT, Gilbert M, Polymer, 44(26), 8081 (2003)
  13. Lee BS, Chun BC, Chung YC, Fibers and Polymers, 5, 145 (2004)
  14. Rath T, Kumar S, Mahaling RN, Das CK, Yadaw SB, J. Appl. Polym. Sci., 106(6), 3721 (2007)