화학공학소재연구정보센터
Clean Technology, Vol.23, No.3, 302-307, September, 2017
유류오염토양 처리를 위한 컬럼식 토양세정기술 평가
Evaluation of Soil Flushing Column Test for Oil-contaminated Soil Treatment
E-mail:
초록
본 연구는 오염현장에서 채취한 유류오염토양을 in situ 토양세정법으로 정화시 기술 적용성을 평가하기 위한 컬럼식 실험이다. 실험에 사용한 오염토양의 토성은 사토(sand)이었으며, 초기 TPH 오염농도는 9,369 mg kg-1이었다. 세정용액으로 0.1% Tween-80을 사용하였으며, 반응기로는 아크릴 원형컬럼과 유리 시린지컬럼을 사용하였다. 아크릴 원형컬럼 실험에서 0.1% Tween-80을 1 PV 주입하였을 때 토양 TPH의 35%가 제거되었고 이후 5 PV까지도 제거효율이 약 40% 정도로 큰 증가가 나타나지 않았으나 7 PV 주입하였을 때 약 60%가 제거되었다. 아크릴 원형컬럼 대신 유리 시린지컬럼을 사용하여 체류시간을 증가시키자 5 PV까지는 아크릴 원통컬럼을 사용한 경우보다 제거효율이 전반적으로 약 3 ~ 12% 높았으나 7 PV을 모두 주입하였을 때의 제거효율은 약 60%로 서로 차이가 없었다. 단독 alum과 alum+polymer 혼합응집제를 사용하여 폐세정액을 응집처리한 결과 최적 주입농도는 두 경우 모두 150 mg L-1인 것으로 나타났다. 응집처리한 Tween-80 폐세정액에 Tween-80을 0.1% 농도로 새로 용해하여 재사용 세정을 실시한 결과의 제거효율은 41.0%로 재사용하지 않은 0.1% Tween-80의 32.0%보다 약 9% 높게 나타났다.
This study was conducted to evaluate the feasibility of in situ soil flushing for TPH-contaminated soil remediation with column test. The soil texture of the soil was sand and the initial TPH concentration was 9,369 mg kg-1. 0.1% Tween-80 was selected as surfactant solution. And the acrylic and the glass syringe columns were used as reactors. In the acrylic column test, 35% of the initial TPH was removed in 1 PV of flushing and approximately 40% in 5 PV and finally 7 PV showed about 60%. The glass column test showed 3 ~ 12% higher removal efficiency than that of acrylic test until 5 PV of flushing. However, there was no difference in TPH removal efficiency when 7 PV of surfactant was finally flushed. Both of alum only and alum+polymer mixed surfactants showed also the best coagulation efficiency in 150 mg L-1 of concentraion. When Tween 80 was newly dissolved in 0.1% to the recovered solution after the coagulation treatment, the removal efficiency was increased from 32.0% to 41.0% in comparison to the new 0.1% Tween 80 solution without reuse by coagulation treatment.
  1. Ministry of Environment (Korea), “Guideline for Remediation Technology of Oil-Contaminated Soil,”Research Report, 2007.
  2. Park JS, Geoenv. Eng., 6(1), 27 (2005)
  3. Choi SI, So JH, Cho CH, Korean Soc. Soil Groundwater Environ., 7(4), 87 (2002)
  4. Park JU, Park JS, Shin CH, Won CH, Kim SH, Korean Soc. Waste Manage, 21(6), 588 (2004)
  5. Kang HC, Kim JD, Han BG, Seo SW, Shim CH, Park JS, J. Korean Oil Chem.'s Soc., 32(4), 740 (2015)
  6. Ahn SK, Kim C, Lee JM, Lee GC, Shon ZH, Jung BG, Yoon TK, Clean Technol., 18(4), 390 (2012)
  7. Kim KH, Master Thesis, Woosong University, Daejeon, 2010.
  8. Kim DH, Master Thesis, Kyungsung University, Busan, 2010.
  9. Eweis JB, Ergas SJ, Chang DPY, Schroeder ED, Bioremediation Principles, McGraw-Hill Co., Malaysia, 1998, pp. 26-27.
  10. Park JJ, J. Korean Environ. Res. Reveg. Technol., 10(5), 76 (2007)
  11. Bon BH, Lim BS, Oa SW, Lee BH, J. Korean Soc. Water Qual., 22(5), 824 (2006)
  12. Cho D, Kim HS, Korean J. Chem. Eng., 19(5), 783 (2002)
  13. Yoo JC, Kwak SJ, Lee JS, Jeon PY, Park ER, Baek KT, J. Korean Soc. Environ. Technol., 17(1), 1 (2016)