화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.5, 506-512, October, 2017
액체/액체 계면에서 테트라사이클린 전이반응의 전기화학적 분석 및 응용
Electrochemical Analysis and Applications of Tetracycline Transfer Reaction Process at Liquid/liquid Interfaces
E-mail:
초록
편극화된 물/1,2-dichloroethane (1,2-DCE) 계면에서 이온화가 가능한 테트라사이클린(tetracycline, TC) 화학종 전이 반응을 순환전압전류법과 시차펄스전위법을 이용하여 조사하였다. 물의 pH 변화에 따라 전하 상태가 다른 TC 이온 화학 종이 물/1,2-DCE 계면에서 전이하는 전위 값을 측정하여 TC 이온의 상 분배 도표를 얻었다. 이를 통해 각 pH에 따라 수용액 또는 유기 용액 층에서 좀 더 우세한 TC 이온 화학종 형태를 확인하였다. 이와 함께 상기 계면에서 TC 전이 반응의 형식 전이 전위, 분배 계수 및 Gibbs 에너지 값을 포함한 열역학적 정보를 얻었다. 또한 TC 이온을 정량 분석가능한 센서로 제작하기 위해 고분자 박막에 단일 마이크로 홀을 만들고 유기성의 polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) 젤을 도포하여 물/젤 계면을 형성하였다. 물/1,2-DCE 계면에서 TC 이온의 전이 반응과 매우 유사하게 수용액의 pH가 4.0일 때 TC 이온의 농도 변화에 따라 전류 값이 증가하는 것을 순환전압전류법으로 관찰하였다. 시차펄스벗김전위법을 이용하여 상기 물/젤 계면에서 완충 수용액에 존재하는 TC 화학종을 5 μM까지 검출할 수 있었으며, 5 μM에서 30 μM까지 정량분석 할 수 있었다.
The transfer reaction characteristics of tetracycline (TC) across a polarized water/1,2-dichloroethane (1,2-DCE) interface was studied via controlling both pH and ionic strength of the aqueous phase in conjunction with cyclic and differential pulse voltammetries. Formal transfer potential values of differently charged TC ionic species at the water/1,2-DCE interface were measured as a function of pH values of the aqueous solution, which led to establishing an ionic partition diagram for TC. As a result, we could identify which TC ionic species are more dominant in the aqueous or organic phase. Thermodynamic properties including the formal transfer potential, partition coefficient and Gibbs transfer energy of TC ionic species at the water/1,2-DCE interface were also estimated. In order to construct an electrochemical sensor for TC, a single microhole supported water/polyvinylchloride- 2-nitrophenyloctylether (PVC-NPOE) gel interface was fabricated. A well-defined voltammetric response associated with the TC ion transfer process was achieved at pH 4.0 similar to that of using the water/1,2-DCE interface. Also the measured current increased proportionally with respect to the TC concentration. A 5 μM of TC in pH 4.0 buffer solution with a dynamic range from 5 μM to 30 μM TC concentration could be analyzed when using differential pulse stripping voltammetry.
  1. Greenstein G, J. Periodontol., 66, 925 (1995)
  2. Daghrir R, Drogui P, Environ. Chem. Lett., 11, 209 (2013)
  3. Oka H, Ito Y, Matsumoto H, J. Chromatogr. A, 882, 109 (2000)
  4. Ji H, Wang E, Analyst, 113, 1541 (1988)
  5. Tumini M, Nagel OG, Molina P, Althaus RL, Rev. Argent. Microbiol., 48, 143 (2016)
  6. Wei XQ, Liu ZF, Liu SP, Anal. Biochem., 346, 330 (2005)
  7. Wang H, Zhao H, Quan X, Chen S, Electroanalysis, 23, 1863 (2011)
  8. Ghandour MA, Ali AMM, Anal. Lett., 24, 2171 (1991)
  9. Caplis ME, Ragheb HS, Schall ED, J. Pharm. Sci., 54, 694 (1965)
  10. Velicky M, Rodgers ANJ, Dryfe RAW, Tam K, ADMET DMPK, 2, 143 (2014)
  11. Bouchard G, Carrupt PA, Testa B, Gobry V, Girault HH, Chem. Eur. J., 8, 3478 (2002)
  12. Gulaboski R, Borges F, Pereira CM, Cordeiro MNDS, Garrido J, Silva AF, Comb. Chem. High Throughput Screen., 10, 514 (2007)
  13. Ulmeanu SM, Jensen H, Bouchard G, Carrupt PA, Girault HH, Pharm. Res., 20, 1317 (2003)
  14. Pang JY, Han CR, Chao YH, Jing L, Ji HY, Zhu WS, Chang YH, Li HM, Sep. Sci. Technol., 50(13), 1993 (2015)
  15. Arrigan DWM, Anal. Lett., 41, 3233 (2008)
  16. Gulaboski R, Cordeiro MNDS, Milhazes N, Garrido J, Borges F, Jorge M, Pereira CM, Bogeski I, Morales AH, Naumoski B, Silva F, Anal. Biochem., 361, 236 (2007)
  17. Fernandez RA, Dassie SA, J. Electroanal. Chem., 585(2), 240 (2005)
  18. Reymond F, Carrupt PA, Testa B, Girault HH, Chem. Eur. J., 5, 39 (1999)
  19. Reymond F, Chopineaux-Courtois V, Steyaert G, Bouchard G, Carrupt PA, Testa B, Girault HH, J. Electroanal. Chem., 462(2), 235 (1999)
  20. Koryta J, Electrochim. Acta, 29, 445 (1984)
  21. Kozlov YN, Koryta J, Anal. Lett., 16, 255 (1983)
  22. Youn HH, Kyungpook National University, Daegu, Republic of Korea (2016).
  23. Hossain MM, Girault HH, Lee HJ, Bull. Korean Chem. Soc., 33, 1734 (2012)
  24. Hatay I, Su B, Li F, Mendez MA, Khoury T, Gros CP, Barbe JM, Ersoz M, Samec Z, Girault HH, J. Am. Chem. Soc., 131(37), 13453 (2009)
  25. Faisal SN, Pereira CM, Rho S, Lee HJ, Phys. Chem. Chem. Phys., 12, 15184 (2010)
  26. Deryabina MA, Hansen SH, Jensen H, Anal. Chem., 80, 203 (2008)
  27. Kim TR, Pereira CM, Han HY, Lee HJ, Anal. Chem., 87, 5356 (2015)
  28. Leeson LJ, Krueger JE, Nash RA, Tetrahedron Lett., 18, 1155 (1963)
  29. Rigler NE, Bag SP, Leyden DE, Sudmeier JL, Reilley CN, Anal. Chem., 37, 872 (1965)
  30. Mohammed-Ali MAJ, J. Chem. Pharm. Res., 4, 1319 (2012)
  31. Colaizzi JL, Klink PR, J. Pharm. Sci., 58, 1184 (1969)
  32. Molina A, Serna C, Ortuno JA, Gonzalez J, Torralba E, Gil A, Anal. Chem., 81, 4220 (2009)
  33. Ortuo JA, Serna C, Molina A, Gil A, Anal. Chem., 78, 8129 (2006)
  34. Ulmeanu S, Lee HJ, Fermin DJ, Girault HH, Shao Y, Electrochem. Commun., 3, 219 (2001)
  35. Gobry V, Ulmeanu S, Reymond F, Bouchard G, Carrupt PA, Testa B, Girault HH, J. Am. Chem. Soc., 123(43), 10684 (2001)
  36. Ribeiro JA, Silva F, Pereira CM, Anal. Chem., 85, 1582 (2013)
  37. Lam HT, Pereira CM, Roussel C, Carrupt PA, Girault HH, Anal. Chem., 78, 1503 (2006)
  38. Peljo P, Girault HH, Encyclopedia of Analytical Chemistry, pp. 1-11, John Wiley & Sons (2012).