화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.5, 576-580, October, 2017
Plate-type V2O5-WO3/TiO2 SCR 촉매의 열적 비활성화 특성
Thermal Deactivation of Plate-type V2O5-WO3/TiO2 SCR Catalyst
E-mail:
초록
본 연구에서는 plate-type의 V2O5-WO3/TiO2 SCR 촉매의 열적 비활성화 특성을 고찰하였다. 이를 위하여 plate type의 촉매를 500~800 ℃의 온도에서 3 h 동안 열처리하였다. 촉매의 특성 변화를 고찰하기 위하여 XRD, N2 adsorption-desorption에 의한 비표면적과 기공특성, SEM-EDS 등을 측정하였으며, 열처리 온도에 따른 NOx 전환율을 측정하였다. NOx 전환율은 열처리 온도가 증가함에 따라 감소하였는데 700 ℃ 이상인 경우에 크게 감소하였다. 이는 TiO2의 결정상이 anatase에서 rutile로 변하고, TiO2의 입성장 및 CaWO4와 같은 결정상이 생성되어 촉매의 비표면적과 기공부피가 감소하였기 때문이다. 또한 700 ℃ 이상의 온도에서는 촉매 활성물질인 V2O5가 승화/기화되었으며, 촉매의 담지체로 사용되는 금속 지지체는 Cr 탄화물 형성에 따른 입계 부식과 산화가 발생하는 것으로 나타났다.
In the present paper, the thermal deactivation characteristics of plate-type commercial V2O5-WO3/TiO2 SCR catalyst were investigated. For this purpose, the plate-type catalyst was calcined at different temperatures ranging from 500 ℃ to 800 ℃ for 3 hours. Structural and morphological changes were characterized byXRD, specific surface area, porosity, SEM-EDS and also NOx conversion with ammonia according to the calcine temperature. The NOx conversion decreased with increasing calcine temperature, especially when the catalysts were calcined at temperatures above 700 ℃. This is because the crystal phase of TiO2 changed from anatase to rutile, and the TiO2 grain growth and CaWO4 crystal phase were formed, which reduced the specific surface area and pore volume. In addition, V2O5, which is a catalytically active material, was sublimated or vaporized over 700 ℃, and a metal mesh used as a support of the catalyst occurred intergranular corrosion and oxidation due to the formation of Cr carbide.
  1. Gao F, Tang X, Yi H, Zhao S, Li C, Li J, Shi Y, Meng X, Catalysts, 7, 199 (2017)
  2. Liu ZM, Liu YX, Li Y, Su H, Ma LL, Chem. Eng. J., 283, 1044 (2016)
  3. Roy S, Hegde MS, Madras G, Appl. Energy, 86(11), 2283 (2009)
  4. Granger P, Parvulescu VI, Chem. Rev., 111(5), 3155 (2011)
  5. Boningari T, Smirniotis PG, Curr. Opin. Chem. Eng., 13, 133 (2016)
  6. Nakajima F, Hamada I, Catal. Today, 29(1-4), 109 (1996)
  7. Busca G, Lietti L, Ramis G, Berti F, Appl. Catal. B: Environ., 18(1-2), 1 (1998)
  8. Castellino F, Rasmussen SB, Jensen AD, Johnsson JE, Fehrmann R, Appl. Catal. B: Environ., 83(1-2), 110 (2008)
  9. Liu ZM, Woo SI, Catal. Rev.-Sci. Eng., 48(1), 43 (2006)
  10. Alemany LJ, Berti F, Busca G, Ramis G, Robba D, Toledo GP, Trombetta M, Appl. Catal. B: Environ., 10(4), 299 (1996)
  11. Forzatti P, Nova I, Tronconi E, Kustov A, Thogersen JR, Catal. Today, 184(1), 153 (2012)
  12. Heck RM, Catal. Today, 53(4), 519 (1999)
  13. Hums E, Catal. Today, 42(1-2), 25 (1998)
  14. Joshi SY, Harold MP, Balakotaiah V, Chem. Eng. Sci., 65(5), 1729 (2010)
  15. Nova I, Acqua LD, Lietti L, Giamello E, Forzatti P, Appl. Catal. B: Environ., 35(1), 31 (2001)
  16. Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A, Appl. Catal. B: Environ., 39(2), 181 (2002)
  17. Kompio PGWA, Bruckner A, Hipler F, Manoylova O, Auer G, Mestl G, Grunert W, Appl. Catal. B: Environ., 217, 365 (2017)
  18. Hanaor DAH, Sorrell CC, J. Mater. Sci., 46(4), 855 (2011)
  19. Park SS, PhD Dissertation, Gyeongsang National University, Jinju, Korea (2010).
  20. Faber M, Uy OM, Srivastava RD, J. Chem. Phys., 56, 5312 (1972)
  21. Huang XZ, Wang D, Yang YT, J. Iron Steel Res. Int., 22, 1062 (2015)
  22. Huh DW, Rhee S, J. Korean Weld. Joining Soc., 29, 556 (2011)