화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.11, 3017-3027, November, 2017
Statistical optimization of curcumin nanosuspension through liquid anti-solvent precipitation (LASP) process in a microfluidic platform: Box-Behnken design approach
E-mail:
The paper deals with the development and optimization of curcumin nanosuspension by solvent/anti-solvent precipitation method in a microfluidic platform. A three-level Box-Behnken design was applied as an optimizing technique to investigate the effect of three independent operating variables, namely, volume ratios of anti-solvent to solvent, flow rate of drug solution, and curcumin concentration on the preferred response. In presence of PVP as the stabilizer, a nano-curcumin suspension was obtained in the range of 62-335nm. Analysis of variance showed that the variables with the highest effect were the linear effects of the anti-solvent to solvent ratio, and its corresponding squared term. Applying response surface methodology, curcumin nanosuspension with average size of 63.12 nm can be obtained under optimum condition As: S=15, solvent flow rate of 1.0mL/min and curcumin ethanolic concentration of 5.0mg/mL. The prepared nanoparticles were further characterized by infrared spectroscopy, scanning electron microscopy, and X-ray diffraction tests.
  1. Lipinski CA, Am. Pharm. Rev., 5, 82 (2002)
  2. Noyes AA, Whitney WR, J. Am. Chem. Soc., 19, 930 (1897)
  3. Lindfors L, Forssen S, Westergren J, Olsson U, J. Colloid Interface Sci., 325(2), 404 (2008)
  4. Pasquali I, Bettini R, Giordano F, Adv. Drug Deliv. Rev., 60, 399 (2008)
  5. Kim IS, Kim SH, Int. J. Pharm., 245, 67 (2002)
  6. Matteucci ME, Brettmann BK, Rogers TL, Elder EJ, Williams RO, Johnston KP, Mol. Pharmaceutics, 4, 782 (2007)
  7. Chen JF, Zhang JY, Shen ZG, Zhong J, Yun J, Ind. Eng. Chem. Res., 45(25), 8723 (2006)
  8. Zhao H, Wang JX, Wang QA, Chen JF, Yun J, Ind. Eng. Chem. Res., 46(24), 8229 (2007)
  9. Baldyga J, Kubicki D, Shekunov BY, Smith KB, Chem. Eng. Res. Des., 88(9A), 1131 (2010)
  10. Salmaso S, Elvassore N, Bertucco A, Caliceti P, J. Pharm. Sci., 98, 640 (2009)
  11. Reverchon E, Adami R, Cardea S, Della Porta G, J. Supercrit. Fluids, 47(3), 484 (2009)
  12. Park MW, Yeo SD, Chem. Eng. Res. Des., 90(12), 2202 (2012)
  13. Yeo SD, Lee JC, J. Supercrit. Fluids, 30(3), 315 (2004)
  14. Weingaertner DA, Lynn S, Hanson DN, Ind. Eng. Chem. Res., 30, 490 (1991)
  15. Chen JF, Zheng C, Chen GT, Chem. Eng. Sci., 51(10), 1957 (1996)
  16. Zhao H, Wang JX, Zhang HX, Shen ZG, Yun J, Chen JF, Chin. J. Chem. Eng., 17(2), 318 (2009)
  17. Tosun G, 6th European Conference on Mixing (1988).
  18. Johnson BK, Prud'homme RK, AIChE J., 49(9), 2264 (2003)
  19. Mersmann A, Chem. Eng. Process., 38(4-6), 345 (1999)
  20. Grenman H, Murzina E, Ronnholm M, Eranen K, Mikkola JP, Lahtinen M, Salmi T, Murzin DY, Chem. Eng. Process., 46(9), 862 (2007)
  21. Rao DP, Bhowal A, Goswami PS, Ind. Eng. Chem. Res., 43(4), 1150 (2004)
  22. Akay G, Tong L, Addleman R, Ind. Eng. Chem. Res., 41(22), 5436 (2002)
  23. Chen JF, Wang YH, Guo F, Wang XM, Zheng C, Ind. Eng. Chem. Res., 39(4), 948 (2000)
  24. Hessel V, Lowe H, Schonfeld F, Chem. Eng. Sci., 60(8-9), 2479 (2005)
  25. Mello JD, Mello AD, Lab Chip, 4, 11 (2004)
  26. Taghavi-Moghadam S, Kleemann A, Golbig G, Org. Process Res. Dev., 5, 652 (2001)
  27. Ehrfeld W, CHIMIA Int. J. Chem., 56, 598 (2002)
  28. Patil P, Khairnar G, Naik J, Chem. Eng. Res. Des., 104, 98 (2015)
  29. He Y, Huang Y, Cheng Y, Cryst. Growth Des., 10, 1021 (2010)
  30. Liu Z, Huang Y, Jin Y, Cheng Y, Microfluid. Nanofluid., 9, 773 (2010)
  31. Wang WT, Zhao SF, Shao T, Jin Y, Cheng Y, Chem. Eng. J., 192, 252 (2012)
  32. Kakran M, Sahoo NG, Tan IL, Li L, J. Nanopart. Res., 14, 757 (2012)
  33. He Y, Huang Y, Wang W, Cheng Y, Chem. Eng. J., 168, 1021 (2011)
  34. Valeh-e-Sheyda P, Rahimi M, Parsamoghadam A, Adibi H, J. Taiwan Inst. Chem. Eng., 46, 65 (2015)
  35. Valeh-e-Sheyda P, Rahimi M, Adibi H, Razmjou Z, Ghasempour H, Chem. Eng. Process., 91, 78 (2015)
  36. Ferreira SC, Bruns R, Ferreira H, Matos G, David J, Brandao G, da Silva EP, Portugal L, Dos Reis P, Souza A, Anal. Chim. Acta, 597, 179 (2007)
  37. Hunter J, Hunter J, Box G, Wiley series in probability and mathematical statistics (1978).
  38. Box GE, Wilson K, J. R. Stat. Soc. Series B, 13, 1 (1951)
  39. Box GE, DW, Technometrics, 2, 455 (1960)
  40. Souza AS, dos Santos WNL, Ferreira SLC, Spectroc. Acta Pt. B-Atom. Spectr., 60, 737 (2005)
  41. Montgomery DC, John Wiley & Sons (2008).
  42. Agnihotri SM, Vavia PR, Biol. Med., 5, 90 (2009)
  43. Chopra S, Patil GV, Motwani SK, Eur. J. Pharm. Biopharm., 66, 73 (2007)
  44. Li YL, Fang ZX, You J, J. Agric. Food Chem., 61, 1464 (2013)
  45. Celebi N, Yildiz N, Demir AS, Calimli A, J. Supercrit. Fluids, 47(2), 227 (2008)
  46. Guozhong Cao YW, 2nd Ed., World Scientific, London (2011).
  47. Kakran M, Sahoo NG, Li L, Judeh Z, Wang Y, Chong K, Loh L, Int. J. Pharm., 383, 285 (2010)
  48. Matteucci ME, Hotze MA, Johnston KP, Williams RO, Langmuir, 22(21), 8951 (2006)
  49. Zhang HX, Wang JX, Zhang ZB, Le Y, Shen ZG, Chen JF, Int. J. Pharm., 374, 106 (2009)
  50. Sengupta A, Kamble PD, Basu JK, Sengupta S, Ind. Eng. Chem. Res., 51, 147 (2011)
  51. Zetasizer Nano Series, Nano Series, User Manual. MAN0317. Issue 1.1. (2004).
  52. Thorat AA, Dalvi SV, Cryst. Eng. Comm., 16, 11102 (2014)
  53. Mohan PRK, Sreelakshmi G, Muraleedharan CV, Joseph R, Vib. Spectrosc., 62, 77 (2012)
  54. Rabinow BE, Nat. Rev. Drug Discovery, 3, 785 (2004)
  55. Sun J, Simon SL, Thermochim. Acta, 463(1-2), 32 (2007)
  56. Kim S, Ng WK, Dong Y, Das S, Tan RBH, J. Food Eng., 108(1), 37 (2012)