Advanced Powder Technology, Vol.28, No.10, 2735-2740, 2017
Analysis of triboelectric charging of particles due to aerodynamic dispersion by a pulse of pressurised air jet
Triboelectric charging of powders causes nuisance and electrostatic discharge hazards. It is highly desirable to develop a simple method for assessing the triboelectric charging tendency of powders using a very small quantity. We explore the use of aerodynamic dispersion by a pulse of pressurised air using the disperser of Morphologi G3 as a novel application. In this device particles are dispersed by injection of a pulse of pressurised air, the dispersed particles are then analysed for size and shape analysis. The high transient air velocity inside the disperser causes collisions of sample particles with the walls, resulting in dispersion, but at the same time it could cause triboelectric charging of the particles. In this study, we analyse this process by evaluating the influence of the transient turbulent pulsed-air flow on particle impact on the walls and the resulting charge transfer. Computational Fluid Dynamics is used to calculate particle trajectory and impact velocity as a function of the inlet air pressure and particle size. Particle tracking is done using the Lagrangian approach and transient conditions. The charge transfer to particles is predicted as a function of impact velocity and number of collisions based on a charge transfer model established previously for several model particle materials. Particles experience around ten collisions at different velocities as they are dispersed and thereby acquire charges, the value of which approaches the equilibrium charge level. The number of collisions is found to be rather insensitive to particle size and pressure pulse, except for fine particles, smaller than about 30 gm. As the particle size is increased, the impact velocity decreases, but the average charge transfer per particle increases, both very rapidly. Aerodynamic dispersion by a gas pressure pulse provides an easy and quick assessment of triboelectric charging tendency of powders. (C) 2017 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.