Advanced Powder Technology, Vol.28, No.9, 2306-2316, 2017
Experimental investigation of bubble and particle motion behaviors in a gas-solid fluidized bed with side wall liquid spray
Bubble and particle motion behaviors are investigated experimentally in a gas solid fluidized bed with liquid spray on the side wall. The particles used in the experiment are classified as Geldart B particles. The results reveal that when the fluid drag force is less than the liquid bridge force between particles, liquid distribute all over the bed. Bubble size increases as the increase of inter-particle force, then decreases owing to the increase of particle weight with increasing liquid flow rate. When the fluid drag force is greater than the liquid bridge force, liquid mainly distribute in the upper part of the bed. And it is difficult for the wet particles to form agglomerates. Bubble size decreases with increasing liquid flow rate due to the increasing of minimum fluidization velocity. Besides, the acoustic emission (AE) measurements illustrate that the liquid adhesion and evaporation on particles could enhance the particles motion intensity. Consequently, the bubble and particle behaviors change due to the variation in fluidized gas velocity and liquid flow rate should be seriously considered when attempting to successfully design and operate the side wall liquid spray gas solid fluidized bed. (C) 2017 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology japan. All rights reserved.