화학공학소재연구정보센터
Applied Surface Science, Vol.420, 399-406, 2017
Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity
Electronic structure in principle determines the light absorbance, charge transfer and separation, and consequently, photocatalytic property of a photocatalyst. Herein, we report rutile SnO2 with a desirable electronic structure that exhibits a narrowed bandgap and an increased valence band width resulted from the introduction of homogeneous oxygen vacancies. XPS, Raman, ESR and PL spectra demonstrate the homogeneous oxygen vacancies confined in SnO2 nanoparticles. Moreover, the first principle calculations theoretically reveal the desirable electronic structure. The narrowed bandgap further contributes to extended light absorption range and the increased valence band width leads to efficient charge transfer and separation, hence facilitating the visible light photoreactivity. As a result, the defected SnO2 exhibits a superior visible light photocatalytic activity. More strikingly, the photodegration of methyl orange (MO) is completely accomplished within only 20 min under lambda >= 420 nm. Briefly, this work both experimentally and theoretically indicates that homogeneous oxygen vacancies confined in SnO2 nanoparticles lead to the optimized electronic structure and, consequently, the remarkable visible light photocatalytic activity. This could open up an innovative strategy for designing potentially efficient photocatalysts. (C) 2017 Elsevier B.V. All rights reserved.