화학공학소재연구정보센터
Chemical Engineering and Processing, Vol.120, 27-56, 2017
Recent advances in smart integrated membrane assisted liquid extraction technology
Novel processes based on SIMALE have been proposed as effective methods for the selective separation of different chemical species such as metal ions, organic/biologically important compounds and gas mixtures from different waste streams including nuclear waste. The industrial use of supported liquid membranes based on conventional liquids is limited by their relative instability and short lifetime. Under SIMALE techniques, the stability of the SLM is ensured by a modified SLM with pseudo emulsion based hollow fiber strip dispersion or non-dispersive solvent extraction techniques. In order to promote operational stability, SIMALE, using ionic liquids, as a liquid membrane phase could overcome these inconveniences due to their negligible vapour pressure and the possibility of minimizing their solubility in the surrounding phases. SIMALE studies on membrane-based dense gas extraction reported higher extraction efficiencies when the near critical or super-critical solvent is used. This review also discuss important applications including scale up, process intensification aspects, current status of the technology and future directions.