화학공학소재연구정보센터
Chemical Engineering Communications, Vol.204, No.8, 858-863, 2017
Effect of Chemical Compositions on Ash Fusibility Characterization of a Jincheng Anthracite during Combustion and Gasification
The ash melting temperature of coal ash has an important effect during the fluidized bed combustion and gasification process, which affects the slagging and deposition characteristics of the boiler. Experiments on the effects of chemical components on the ash fusion behaviors have been completed on the ash fusion temperatures (AFTs) analyzer under typical gasification and combustion atmospheres. Meanwhile, calculations on the variation of minerals in ash with ash composition were conducted using the FactSage software. The results indicated that the AFTs under gasification were a little higher than those under the combustion atmosphere. On increasing the Fe2O3, CaO, and Na2O contents under the combustion and gasification atmospheres, the four temperatures deformation temperature (DT), softening temperature (ST), hemispherical temperature (HT), and flow temperature (FT) decreased dramatically and the generation and transformation of minerals occurred. The iron-containing minerals, such as hercynite and fayalite, formed with increase in the content of Fe2O3; the Ca-bearing feldspar minerals, like gehlenite and anorthite, started appearing on increasing the CaO content, and the Na-containing feldspar minerals, like carnegieite, were detected as the Na2O was increased. These three minerals can form low-temperature eutectics, decreasing the fusion temperature.