Chemical Engineering Communications, Vol.204, No.8, 916-925, 2017
Investigation of the Thermal Behavior of Polypyrrole/Carbon Nanotube Composites and Utilization as Capacitive Material or Support for Catalysts
In this study, polypyrrole (PPy)/carbon nanotube (CNT) composites were synthesized by in situ chemical oxidative polymerization of a pyrrole monomer on CNT. Two different types of CNT having different structural properties were used. The composites were characterized using BET surface area analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) techniques. Thermal decomposition kinetics of PPy/CNT composites was studied by thermal gravimetric analysis techniques (TG/DTG (differential thermal gravimetric)) at different heating rates (2.5, 5, 7.5, and 10 K min(-1)). Kinetic parameters of the composites were obtained from the TG and DTG curves using the Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) models. The electrochemical capacitive properties of the composites were investigated by the cyclic voltammetry (CV) technique. Pt nanoparticles were decorated on the plain CNTs and composite materials via the microwave irradiation method.
Keywords:Isoconversional method;Microwave irradiation;Polypyrrole/CNT composite;Pt nanoparticle;Thermogravimetric analysis (TGA)