Chemical Engineering Journal, Vol.327, 109-119, 2017
Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry
Series of Er3+-activated La2MoO6 nanoparticles were prepared by a traditional sol-gel method. Under the excitation of 379 nm, the resultant compounds revealed dazzling emissions that can be seen by naked eye. With the increment of Er3(+) ion concentration, the emission intensity showed an upward tendency and reached its maximum value when the doping concentration was 2 mol%. The critical distance was calculated to be 23.41 angstrom and the dipole-dipole took the domination in the concentration quenching mechanism. Furthermore, by means of a fluorescence intensity ratio technique, the temperature sensing performances of the synthesized samples in the temperature range of 303-463 K were investigated based on the thermally coupled levels, H-2(11/2) and S-4(3/2), of Er3+ ions. It is found that the sensor sensitivity of Er3+-activated La2MoO6 nanoparticles can be greatly affected by the doping concentration and the maximum sensor sensitivity was determined to be about 0.0097 K (1) at 463 K. In addition, the prepared nanoparticles also exhibited splendid water resistance behaviors. These results demonstrate that the Er3+-activated La2MoO6 nanoparticles are promising candidates for simultaneous solid-state lighting and non-contact thermometry. (c) 2017 Elsevier B.V. All rights reserved.