화학공학소재연구정보센터
Chemical Physics Letters, Vol.686, 134-139, 2017
Nanofiber/ZrO2-based mixed matrix separator for high safety/high-rate lithium-ion batteries
A novel asymmetric separator based on a thin bacterial cellulose nanofiber (BCF)/nano-ZrO2 composite layer and a non-woven support was prepared by paper-making method. Owing to the relatively polar constituents and well-developed, gradient porous structure, the separator exhibited the advantages of higher thermal resistance, electrolyte wettability, and ionic conductivity in comparison to polyethylene separator. Based on these advantages, the Li/LiFePO4 cells assembled from this composite separator showed excellent performance characteristics, including outstanding C-rate capability, high capacity and cycling performance. Production of the composite separator is simple, environmentally benign and economically viable. Therefore, it's a good candidate for creating improved lithium-ion batteries. (C) 2017 Elsevier B.V. All rights reserved.