Energy Sources Part A-recovery Utilization and Environmental Effects, Vol.39, No.12, 1250-1257, 2017
Prediction of grinding behavior of low-grade coal based on its moisture loss by neural networks
In this article, it was aimed to determine the influence of moisture amount on the grindability of Afsin-Elbistan low-grade coal using impact strength index (ISI) and hardgrove grindability index (HGI) tests. For this purpose, the sample was dried at a temperature range of 60 degrees C-150 degrees C for various times (80-240 min). A drying rate was further determined for each experiment. ISI and HGI values of each sample varied between 25.56-90 and 25-120, respectively. The obtained results show that a decrease of moisture in each sample led to an increase its grindability. In addition, artificial neural network (ANN) approach with two different learning techniques (Levenberg-Marquardt "LM" and Bayesian regularization "BR") was carried out to predict the HGI of Afsin-Elbistan coal. Three input parameters (moisture amount, ISI, and drying rate) obtained from the experiments were used for predicting HGI. LM learning algorithm gave a more satisfactory prediction (R-2 = 0.92, overall) compared to another technique.
Keywords:Artificial neural network approach;Bayesian regularization learning technique;coal grindability;impact strength index;Levenberg-Marquardt learning technique;moisture