IEEE Transactions on Automatic Control, Vol.62, No.8, 3943-3958, 2017
Multiple Lyapunov Functions-Based Small-Gain Theorems for Switched Interconnected Nonlinear Systems
Multiple Lyapunov functions (MLFs)-based small-gain theorems are presented for switched interconnected nonlinear systems with unstable subsystems, which extend the small-gain technique from its original non-switched nonlinear version to a switched nonlinear version. Each lowdimensional subsystem does not necessarily have the input-to-state stability (ISS) property in the whole state space, and it only has individual ISS property in some subregions of the state space. The novelty of this paper is that integral-type MLFs and small-gain techniques are utilized to establish someMLFs-based small-gain theorems for switched interconnected nonlinear systems, which derive various stability results under some novel switching laws designed and construct integral-type MLFs. The small-gain theorems proposed cover several recent results as special cases, which also permit removal of a common restriction in which all low dimensional subsystems in switched interconnected systems are ISS or only some are ISS and others are not. Finally, two illustrative examples are presented to demonstrate the effectiveness of the results provided.
Keywords:Interconnected systems;multiple Lyapunov functions;small-gain theorems;stability;switched nonlinear systems