화학공학소재연구정보센터
Journal of Applied Microbiology, Vol.123, No.4, 832-840, 2017
Development of antimicrobial nanoemulsion-based delivery systems against selected pathogenic bacteria using a thymol-rich Thymus daenensis essential oil
AimsThymol-rich medicinal plants have been used in traditional medicine to relieve infectious diseases. However, the application of essential oils as medicine is limited by its low water solubility and high vapour pressure. The objective of this study was to produce stable nanoemulsions of Thymus daenensis oil in water by preventing Ostwald ripening and phase separation. Methods and ResultsThe antibacterial activity of bulk and emulsified essential oil against selected pathogenic bacteria including Gram-negative (Haemophilus influenzae, Pseudomonas aeruginosa) and Gram-positive (Streptococcus pneumoniae) were investigated in the liquid and vapour phase. The optimum formulation (L2) contained 2% Tween 80 (surfactant) and 01% lecithin (cosurfactant) had a mean droplet diameter of 131nm. In the liquid phase, the optimized nanoemulsion exhibited good antibacterial activity against S.pneumonia with MIC value of 00039mgmL(-1). In the vapour phase, the MIC values against S.pneumonia were similar (<735LL(-1)) for both bulk and emulsified essential oil. However, there was no antibacterial activity in the vapour phase against H.influenzae and P.aeruginosa. Analysis of thymol concentration in the head space indicated that the nanoemulsion retarded the release of thymol into the vapour phase. ConclusionsThese findings highlight the potential applications of nanoemulsions containing essential oils as antibacterial products. Significance and Impact of the studyThe results of the current study highlight the advantages of nanoemulsification for improvement of the physicochemical properties and the antibacterial activity of T.daenensis EOs in the liquid and vapour phase for therapeutic purposes.