- Previous Article
- Next Article
- Table of Contents
Journal of Hazardous Materials, Vol.340, 1-15, 2017
Efficient photocatalytic degradation of tetrabromodiphenyl ethers and simultaneous hydrogen production by TiO2-Cu2O composite films in N-2 atmosphere: Influencing factors, kinetics and mechanism
TiO2-Cu2O photocatalyst composite film with a heterostructure was synthesized on a copper substrate for 2,2',4,4'-tetrabromodiphenyl ether (BDE47) reduction. First, Cu2O film was synthesized by the electrochemical deposition method, and then TiO2 was coated on the surface of the Cu2O film. The morphology, surface chemical composition and optical characteristics of TiO2-Cu2O film were characterized. The degradation efficiency of BDE47 and hydrogen production by TiO2-Cu2O films was higher than those by pure TiO2 or Cu2O films. The highest BDE47 degradation efficiency of 90% and hydrogen production of 12.7 mmol L-liq(-1) after 150 min were achieved by 67%TiO2-Cu2O films. The influencing factors were investigated in terms of film component, solvent condition, and initial pH. A kinetics study demonstrated that BDE47 degradation followed a pseudo-first-order model. Photocatalytic apparent reaction rate constant of BDE47 by TiO2-Cu2O films was 0.0070 min(-1), which was 3.3 times of that by directly photolysis process. During photocatalytic debrmination process, the photogenerated holes were reserved in the valance band of Cu2O to oxidize methanol. Meanwhile, the partial photogenerated electrons transferred to the conduction band of TiO2 and directly eliminated the ortho-Br of BDE47 and yielded BDE28 and BDE15. The other partial photogenerated electrons reduced protons (H+) to form atomic hydrogen (H degrees), which could substitute the para-Br of BDE47 and generated BDE17 and produce hydrogen. (C) 2017 Elsevier B.V. All rights reserved.