Journal of Physical Chemistry A, Vol.121, No.37, 6874-6886, 2017
Experimental Study and Mathematical Modeling of Self-Sustained Kinetic Oscillations in Catalytic Oxidation of Methane over Nickel
The self-sustained kinetic oscillations in the oxidation of CH4 over Ni foil have been studied at atmospheric pressure using an X-ray diffraction technique and mass spectrometry. It has been shown that the regular oscillations appear under oxygen-deficient conditions; CO, CO2, H-2, and H2O are detected as the products. According to in situ X-ray diffraction measurements, nickel periodically oxidizes to NiO initiating the reaction-rate oscillations. To describe the oscillations, we have proposed a five stage mechanism of the partial oxidation of methane over Ni and a corresponding three-variable kinetic model. The mechanism considers catalytic methane decomposition, dissociative adsorption of oxygen, transformation of chemisorbed oxygen to surface nickel oxide, and reaction of adsorbed carbon and oxygen species to form CO. Analysis of the kinetic model indicates that the competition of two processes, i.e., the oxidation and the carbonization of the catalyst surface, is the driving force of the self sustained oscillations in the oxidation of methane. We have compared this mechanism with the detailed 18-stage mechanism described previously by Lashina et al. (Kinetics and Catalysis 2012, 53, 374-383). It has been shown that both kinetic mechanisms coupled with a continuous stirred-tank reactor model describe well the oscillatory behavior in the oxidation of methane under non-isothermal conditions.