Journal of Physical Chemistry A, Vol.121, No.30, 5690-5699, 2017
Spectroscopic Determination of Aerosol pH from Acid-Base Equilibria in Inorganic, Organic, and Mixed Systems
Atmospheric aerosol acidity impacts key multiphase processes, such as acid-catalyzed reactions leading to secondary organic aerosol formation, which impact climate and human health. However, traditional indirect methods of estimating aerosol pH often disagree with thermodynamic model predictions, resulting in aerosol acidity still being poorly understood in the atmosphere. Herein, a recently developed method coupling Raman microspectroscopy with extended DebyeHuckel activity calculations to directly determine the acidity of individual particles (1-15 mu m projected area diameter, average 6 mu m) was applied to a range of atmospherically relevant inorganic and organic acidbase equilibria systems (HNO3/NO3 , HC2O4/C2O42, CH3COOH/CH3COO, and HCO3/CO32) covering a broad pH range (-1 to 10), as well as an inorganicorganic mixture (sulfate-oxalate). Given the ionic strength of the inorganic solutions, the H+ activity,gamma(H+), yielded lower values (0.680.75) than the organic and mixed systems (0.720.80). A consistent relationship between increasing peak broadness with decreasing pH was observed for acidic species, but not their conjugate bases. Greater insight into spectroscopic responses to acidbase equilibria for more complicated mixtures is still needed to understand the behavior of atmospheric aerosols.