화학공학소재연구정보센터
Journal of Power Sources, Vol.363, 168-176, 2017
The high-temperature and high-humidity storage behaviors and electrochemical degradation mechanism of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries
The high-temperature and high-humidity storage behaviors and electrochemical degradation mechanism of LiNi0.6Co0.2Mn0.2O2 cathode material are investigated systematically. After stored at 55 degrees C and 80% relative humidity, three kinds of changes are observed compared to the fresh materials. The first change is adsorbed species on the surface of the materials caused by atmospheric H2O and CO2. The second is a layer of impurities consisting of LiOH and Li2CO3 coated on the surface of the materials non uniformly. The third is a delithiation layer directly contacting with the bulk materials in the near-surface region, which is believed to be formed by lithium-ions migrating out from the lattice accompanied by the generation of the impurities. A different combination of heating temperature, heating time and heating atmosphere is performed to achieve the separation of the adsorbed species and the delithiation layer (together with the impurities) and study the role of different part in electrochemical degradation, respectively. For the first and the following cycles, the effect of the adsorbed species on the electrochemical properties takes a larger proportion than that of the delithiation layer and impurities. (C) 2017 Elsevier B.V. All rights reserved.