화학공학소재연구정보센터
Journal of Power Sources, Vol.360, 196-205, 2017
Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance
In this study, we discuss the influence of various carbon supports for Pt on proton exchange membrane (PEM) fuel cell performance. Here, Pt supported on various carbon nano-forms [Pt/carbon black (Pt/CB), Pt/single-walled carbon nanotubes (Pt/SWCNT), Pt/multi-walled carbon nanotubes (Pt/MWCNT) and Pt/ graphene (Pt/G)] are synthesized by a facile, single step, microwave-assisted, modified chemical reduction route. Their physical, chemical and electrochemical characteristics pertaining to oxygen reduction reaction (ORR) catalytic activity and stability in PEM fuel cell are studied in detail by various techniques and compared. The study shows that the different carbon supports does not significantly affect the Pt particle size during synthesis, but leads to different amount of defective sites in the carbon framework which influence both the availability of active metal nano-catalysts and metal-support interaction. In-situ electrochemical investigations reveal that the different carbon supports influence both ORR catalytic activity and stability of the catalyst. This is further corroborated by the demonstration of varying polarization characteristics on PEM fuel cell performance by different carbon supported Pt catalysts. This study reveals MWCNT as the most suitable carbon support for Pt catalyst, exhibiting high activity and stability for ORR in PEM fuel cell. (c) 2017 Elsevier B.V. All rights reserved.